40-W 200-ns 300-kHz Thulium-doped Fiber Laser at 2050 nm |
Shin, Jae Sung
(Korea Atomic Energy Research Institute)
Cha, Yong-Ho (Korea Atomic Energy Research Institute) Chun, Byung Jae (Korea Atomic Energy Research Institute) Park, Hyunmin (Korea Atomic Energy Research Institute) |
1 | A. F. El-Sherif and T. A. King, "Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers," Opt. Commun. 208, 381-389 (2002). DOI |
2 | J. Liu, K. Liu, F. Tan, and P. Wang, "High-power thuliumdoped all-fiber superfluorescent sources," IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014). |
3 | V. Mamuschkin, C. Engelmann, and A. Olowinsky, "Improvement of energy deposition in absorber-free laser welding through quasi-simultaneous irradiation," Phys. Procedia 83, 472-482 (2016). DOI |
4 | S. Routsalainen, P. Laakso, and V. Kujanpaa, "Laser welding of transparent polymers by using quasi-simultaneous beam off-setting scanning technique," Phys. Procedia 78, 272-284 (2015). DOI |
5 | I. Mingareev F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, "Welding of polymers using a 2 ㎛ thulium fiber laser," Opt. Laser Technol. 44, 2095-2099 (2012). DOI |
6 | A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, "High average power thulium-doped silica fiber lasers: review of systems and concepts," IEEE J. Sel. Top. Quantum Electron. 24, 0901808 (2018). |
7 | Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, "High power tandem-pumped thulium-doped fiber laser," Opt. Express 23, 2991-2998 (2015). DOI |
8 | K. Bremer, A. Pal, S. Yao, E. Lewis, R. Sen, T. Sun, and K. T. V. Grattan, "Sensitive detection of CO2 implementing tunable thulium-doped all-fiber laser," Appl. Opt. 52, 3957-3963 (2013). DOI |
9 | K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, "2 ㎛ laser sources and their possible applications," in Frontiers in guided wave optics and optoelectronics, B. Pal, Ed. (IntechOpen, London, UK. 2010), pp. 471-500. |
10 | V. Mamuschkin, A. Haeusler, C. Engelmann, A. Olowinsky, and H. Aehling, "Enabling pyrometry in absorber-free laser transmission welding through pulsed irradiation," J. Laser Appl. 29, 022409 (2017). DOI |
11 | J. De Pelsmaeker, G.-J. Graulus, S. Van Vlierberghe, H. Thienpont, D. Van Hemelrijck, P. Dubruel, and H. Ottevaere, "Clear to clear laser welding for joining thermoplastic polymers: a comparative study based on physicochemical characterization," J. Mater. Process. Technol. 255, 808-815 (2018). DOI |
12 | B. Acherjee, "Laser transmission welding of polymers-a review on process fundamentals, material attributes, weldability, and welding techniques," J. Manuf. Process 60, 227-246 (2020). DOI |
13 | G. Overton, "Fiber lasers: 2 ㎛ thulium fiber laser offers precision surgery promise," (Laser Focus World, Published date: 12 August 2017) https://www.laserfocusworld.com/lasers-sources/article/16548098/fiber-lasers-2-m-thulium-fiber-laser-offers-precision-surgery-promise (Accessed date: 16 September 2021). |
14 | D. Creeden, B. R. Johnson, S. D. Setzler, and E. P. Chickles, "Resonantly pumped Tm-doped fiber laser with >90% slope efficiency," Opt. Lett. 39, 470-473 (2014). DOI |
15 | D. Engin, B. Mathason, and M. Storm, "Efficient, space-based, PM 100 W thulium fiber laser for pumping Q-switching 2 ㎛ Ho:YLF for global winds and carbon dioxide lidar," Proc. SPIE 10406, 104060B (2017). |
16 | R. Zhou, S. McKeown, B. G. Griffin, B. Amnueypornsakul, H. Huang, S. Eckhoff, D. Wasserman, and L. L. Goddard, "CO2 sensing with a 2005 nm thulium holmium co-doped fiber laser," in Optical Sensors 2012 (Optical Society of America, 2012), paper STh2B.4. |
17 | P. Lin, T. Wang, W. Ma, J. Chen, Z. Jiang, and C. Yu, "2-㎛ free space data transmission based on an actively mode-locked holmium-doped fiber laser," IEEE Photon. Technol. Lett. 32, 223-226 (2020). DOI |
18 | W. Koen, C. Jacobs, O. Collett, and M. J. D. Esser, "Efficient Ho:YLF laser pumped by a Tm:fiber laser," in Mid-Infrared Coherent Sources 2013 (Optical Society of America, 2013), paper MW1C.6. |
19 | D. Ouyang, J. Zhao, Z. Zheng, S. Ruan, C. Guo, P. Yan, and W. Xie, "110 W all fiber actively Q-switched thulium-doped fiber laser," IEEE Photonics J. 7, 1500407 (2015). |
20 | P. Forster, C. Romano, C. Kieleck, and M. Eichhorn, "Advances in two-micron lasers for nonlinear conversion into the mid-IR," Proc. SPIE 11355, 1135509 (2020). |
21 | C. Yang, Y. Ju, B. Yao, Z. Zhang, T. Dai, and X. Duan, "High-power Tm3+-doped all-fiber laser operating at 1908 nm by a master oscillator power amplifier configuration with narrow spectral width," Chin. Opt. Lett. 14, 061403 (2016). DOI |
22 | W. Yao, Z. Shao, C. Shen, Y. Zhao, H. Chen, and D. Shen, "400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth," in Laser Applications Conference 2017 (Optical Society of America, 2017), paper JTu2A.33. |
23 | K. Yin, R. Zhu, B. Zhang, G. Liu, P. Zhou, and J. Hou, "300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser," Opt. Express 24, 11085-11090 (2016). DOI |
24 | J. S. Shin, Y.-H. Cha, B. J. Chun, D.-Y. Jeong, and H. Park, "200-W continuous wave thulium-doped all-fiber laser at 2050 nm," Curr. Opt. Photon. 5, 306-310 (2021). DOI |
25 | M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Segeev, and V. Gapontsev, "415 W single-mode CW thulium fiber laser in all-fiber format," in the European Conference on Lasers and Electro-Optics 2007 (Optical Society of America, 2007), paper CP2_3. |
26 | J. Kwiatkowski, L. Gorajek, J. K. Jabczynski, W. Zendzain, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, "Tunable Ho:YAG laser pumped by Tm:fiber laser," in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper JTuD4. |
27 | F. Amzajerdiam M. J. Kavaya, U. Singh, and J. Yu, "2-micron coherent Doppler lidar for space-based global wind field mapping," in Proc. IEEE International Symposium on Geoscience and Remote Sensing-IGARSS (Toulouse, France, Jul. 2003), pp. 515-517. |
28 | W. Guan and J. R. Marciante, "Complete elimination of self-pulsations in dual-clad ytterbium-doped fiber lasers at all pumping levels," Opt. Lett. 34, 815-817 (2009). DOI |
29 | S. D. Jackson, "Cross relaxation and energy transfer upconversion process relevant to the functioning of 2 ㎛ Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004). DOI |
30 | T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, "1-kW, all-glass Tm:fiber laser," in SPIE Photonics West 2010:LASE, 2010 (San Francisco, USA, Jan. 2010). |
31 | P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, "Tm-doped fiber lasers: fundamentals and power scaling," IEEE J. Sel. Top. Quantum Electron. 15, 85-92 (2009). DOI |
32 | L. Shah, R. A. Sims, P. Kadwani, C. C. C. Willis, J. B. Bradford, A. Sincore, and M. Richardson, "High-power spectral beam combining of linearly polarized Tm:fiber lasers," Appl. Opt. 54, 757-762 (2015). DOI |
33 | G. D. Goodno, L. D. Book, and J. E. Rothenberg, "Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier," Opt. Lett. 34, 1204-1206 (2009). DOI |
34 | T. Walbaum, M. Heinzig, A. Liem, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Optimization of diode-pumped thulium fiber laser with a monolithic cavity towards 278 W at 1967 nm," in Advanced Solid State Lasers Conference 2015 (Optical Society of America, 2015), paper ATh2A.28. |
35 | T. Walbaum, M. Heinzig, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Monolithic thulium fiber laser with 567 W output power at 1970 nm," Opt. Lett. 41, 2632-2635 (2016). DOI |
36 | Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, "High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity," Opt. Express 20, 17539-17544 (2012). DOI |