Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.5.544

40-W 200-ns 300-kHz Thulium-doped Fiber Laser at 2050 nm  

Shin, Jae Sung (Korea Atomic Energy Research Institute)
Cha, Yong-Ho (Korea Atomic Energy Research Institute)
Chun, Byung Jae (Korea Atomic Energy Research Institute)
Park, Hyunmin (Korea Atomic Energy Research Institute)
Publication Information
Current Optics and Photonics / v.5, no.5, 2021 , pp. 544-553 More about this Journal
Abstract
A 40-W 200-ns 300-kHz thulium-doped fiber laser at 2050 nm with a master oscillator power amplifier configuration was developed, for application to lithium-isotope separation. The master oscillator generated a 5.35 W continuous-wave beam, which the pulse generator then broke into 200-ns pulses at 300 kHz. Then, the laser beam was amplified by passing through a two-stage amplifier. The output power finally obtained was 42.0 W at 2050 nm, and was stable for a long time, over 2 hours. In spite of this achievement, mode instability was observed in the output beam. This can be solved in the future by using a method such as tight coiling.
Keywords
Fiber laser; High power laser; Thulium laser;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. F. El-Sherif and T. A. King, "Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers," Opt. Commun. 208, 381-389 (2002).   DOI
2 J. Liu, K. Liu, F. Tan, and P. Wang, "High-power thuliumdoped all-fiber superfluorescent sources," IEEE J. Sel. Top. Quantum Electron. 20, 3100306 (2014).
3 V. Mamuschkin, C. Engelmann, and A. Olowinsky, "Improvement of energy deposition in absorber-free laser welding through quasi-simultaneous irradiation," Phys. Procedia 83, 472-482 (2016).   DOI
4 S. Routsalainen, P. Laakso, and V. Kujanpaa, "Laser welding of transparent polymers by using quasi-simultaneous beam off-setting scanning technique," Phys. Procedia 78, 272-284 (2015).   DOI
5 I. Mingareev F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, "Welding of polymers using a 2 ㎛ thulium fiber laser," Opt. Laser Technol. 44, 2095-2099 (2012).   DOI
6 A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, "High average power thulium-doped silica fiber lasers: review of systems and concepts," IEEE J. Sel. Top. Quantum Electron. 24, 0901808 (2018).
7 Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, "High power tandem-pumped thulium-doped fiber laser," Opt. Express 23, 2991-2998 (2015).   DOI
8 K. Bremer, A. Pal, S. Yao, E. Lewis, R. Sen, T. Sun, and K. T. V. Grattan, "Sensitive detection of CO2 implementing tunable thulium-doped all-fiber laser," Appl. Opt. 52, 3957-3963 (2013).   DOI
9 K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, "2 ㎛ laser sources and their possible applications," in Frontiers in guided wave optics and optoelectronics, B. Pal, Ed. (IntechOpen, London, UK. 2010), pp. 471-500.
10 V. Mamuschkin, A. Haeusler, C. Engelmann, A. Olowinsky, and H. Aehling, "Enabling pyrometry in absorber-free laser transmission welding through pulsed irradiation," J. Laser Appl. 29, 022409 (2017).   DOI
11 J. De Pelsmaeker, G.-J. Graulus, S. Van Vlierberghe, H. Thienpont, D. Van Hemelrijck, P. Dubruel, and H. Ottevaere, "Clear to clear laser welding for joining thermoplastic polymers: a comparative study based on physicochemical characterization," J. Mater. Process. Technol. 255, 808-815 (2018).   DOI
12 B. Acherjee, "Laser transmission welding of polymers-a review on process fundamentals, material attributes, weldability, and welding techniques," J. Manuf. Process 60, 227-246 (2020).   DOI
13 G. Overton, "Fiber lasers: 2 ㎛ thulium fiber laser offers precision surgery promise," (Laser Focus World, Published date: 12 August 2017) https://www.laserfocusworld.com/lasers-sources/article/16548098/fiber-lasers-2-m-thulium-fiber-laser-offers-precision-surgery-promise (Accessed date: 16 September 2021).
14 D. Creeden, B. R. Johnson, S. D. Setzler, and E. P. Chickles, "Resonantly pumped Tm-doped fiber laser with >90% slope efficiency," Opt. Lett. 39, 470-473 (2014).   DOI
15 D. Engin, B. Mathason, and M. Storm, "Efficient, space-based, PM 100 W thulium fiber laser for pumping Q-switching 2 ㎛ Ho:YLF for global winds and carbon dioxide lidar," Proc. SPIE 10406, 104060B (2017).
16 R. Zhou, S. McKeown, B. G. Griffin, B. Amnueypornsakul, H. Huang, S. Eckhoff, D. Wasserman, and L. L. Goddard, "CO2 sensing with a 2005 nm thulium holmium co-doped fiber laser," in Optical Sensors 2012 (Optical Society of America, 2012), paper STh2B.4.
17 P. Lin, T. Wang, W. Ma, J. Chen, Z. Jiang, and C. Yu, "2-㎛ free space data transmission based on an actively mode-locked holmium-doped fiber laser," IEEE Photon. Technol. Lett. 32, 223-226 (2020).   DOI
18 W. Koen, C. Jacobs, O. Collett, and M. J. D. Esser, "Efficient Ho:YLF laser pumped by a Tm:fiber laser," in Mid-Infrared Coherent Sources 2013 (Optical Society of America, 2013), paper MW1C.6.
19 D. Ouyang, J. Zhao, Z. Zheng, S. Ruan, C. Guo, P. Yan, and W. Xie, "110 W all fiber actively Q-switched thulium-doped fiber laser," IEEE Photonics J. 7, 1500407 (2015).
20 P. Forster, C. Romano, C. Kieleck, and M. Eichhorn, "Advances in two-micron lasers for nonlinear conversion into the mid-IR," Proc. SPIE 11355, 1135509 (2020).
21 C. Yang, Y. Ju, B. Yao, Z. Zhang, T. Dai, and X. Duan, "High-power Tm3+-doped all-fiber laser operating at 1908 nm by a master oscillator power amplifier configuration with narrow spectral width," Chin. Opt. Lett. 14, 061403 (2016).   DOI
22 W. Yao, Z. Shao, C. Shen, Y. Zhao, H. Chen, and D. Shen, "400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth," in Laser Applications Conference 2017 (Optical Society of America, 2017), paper JTu2A.33.
23 K. Yin, R. Zhu, B. Zhang, G. Liu, P. Zhou, and J. Hou, "300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser," Opt. Express 24, 11085-11090 (2016).   DOI
24 J. S. Shin, Y.-H. Cha, B. J. Chun, D.-Y. Jeong, and H. Park, "200-W continuous wave thulium-doped all-fiber laser at 2050 nm," Curr. Opt. Photon. 5, 306-310 (2021).   DOI
25 M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Segeev, and V. Gapontsev, "415 W single-mode CW thulium fiber laser in all-fiber format," in the European Conference on Lasers and Electro-Optics 2007 (Optical Society of America, 2007), paper CP2_3.
26 J. Kwiatkowski, L. Gorajek, J. K. Jabczynski, W. Zendzain, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, "Tunable Ho:YAG laser pumped by Tm:fiber laser," in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper JTuD4.
27 F. Amzajerdiam M. J. Kavaya, U. Singh, and J. Yu, "2-micron coherent Doppler lidar for space-based global wind field mapping," in Proc. IEEE International Symposium on Geoscience and Remote Sensing-IGARSS (Toulouse, France, Jul. 2003), pp. 515-517.
28 W. Guan and J. R. Marciante, "Complete elimination of self-pulsations in dual-clad ytterbium-doped fiber lasers at all pumping levels," Opt. Lett. 34, 815-817 (2009).   DOI
29 S. D. Jackson, "Cross relaxation and energy transfer upconversion process relevant to the functioning of 2 ㎛ Tm3+-doped silica fibre lasers," Opt. Commun. 230, 197-203 (2004).   DOI
30 T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, "1-kW, all-glass Tm:fiber laser," in SPIE Photonics West 2010:LASE, 2010 (San Francisco, USA, Jan. 2010).
31 P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, "Tm-doped fiber lasers: fundamentals and power scaling," IEEE J. Sel. Top. Quantum Electron. 15, 85-92 (2009).   DOI
32 L. Shah, R. A. Sims, P. Kadwani, C. C. C. Willis, J. B. Bradford, A. Sincore, and M. Richardson, "High-power spectral beam combining of linearly polarized Tm:fiber lasers," Appl. Opt. 54, 757-762 (2015).   DOI
33 G. D. Goodno, L. D. Book, and J. E. Rothenberg, "Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier," Opt. Lett. 34, 1204-1206 (2009).   DOI
34 T. Walbaum, M. Heinzig, A. Liem, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Optimization of diode-pumped thulium fiber laser with a monolithic cavity towards 278 W at 1967 nm," in Advanced Solid State Lasers Conference 2015 (Optical Society of America, 2015), paper ATh2A.28.
35 T. Walbaum, M. Heinzig, T. Schreiber, R. Eberhardt, and A. Tunnermann, "Monolithic thulium fiber laser with 567 W output power at 1970 nm," Opt. Lett. 41, 2632-2635 (2016).   DOI
36 Y. Tang, C. Huang, S. Wang, H. Li, and J. Xu, "High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity," Opt. Express 20, 17539-17544 (2012).   DOI