Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.5.538

Bus-waveguide-width Dependence of Evanescent Wave Coupling in a Microring Resonator  

Son, Seong-Jin (Department of Physic and Photon Science, Gwangju Institute Science and Technology)
Kim, Suyeon (Department of Physic and Photon Science, Gwangju Institute Science and Technology)
Yu, Nan Ei (Advanced Photonics Research Institute, Gwangju Institute Science and Technology)
Ko, Do-Kyeong (Department of Physic and Photon Science, Gwangju Institute Science and Technology)
Publication Information
Current Optics and Photonics / v.5, no.5, 2021 , pp. 538-543 More about this Journal
Abstract
The evanescent wave coupling of a microring resonator is controlled by changing the gap distance between the bus waveguide and the microring waveguide. However, the interdependence of the bus waveguide's width and the coupling is not well understood. In this paper, we investigate the dependence of coupling strength on the bus waveguide's width. The strength of the evanescent wave coupling is analytically calculated using coupled-mode theory (CMT) and numerically calculated by three-dimensional finite-difference-time-domain (FDTD) simulation. The analytic and numerical simulation results show that the phase-matching condition in evanescent wave coupling does not provide maximum coupling strength, because both phase-matching and mode confinement influence the coupling. The analytic and simulation results for the evanescent coupling correspond to the experimental results. The optimized bus-waveguide width that provides maximum coupling strength results in intrinsic quality factors of up to 1.3 × 106. This study provides reliable guidance for the design of microring resonators, depending on various applications.
Keywords
Integrated optics; Optical waveguide; Ring resonators;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, "Microring resonator channel dropping filters," J. Light. Technol. 15, 998-1005 (1997).   DOI
2 W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photonics Rev. 6, 47-73 (2012).   DOI
3 C.-Y. Chung and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Light. Technol. 24, 1395-1402 (2006).   DOI
4 K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).   DOI
5 M. S. Luchansky and R. C. Bailey, "Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis," Anal. Chem. 82, 1975-1981 (2010).   DOI
6 P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450, 1214-1217 (2007).   DOI
7 M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment," IEEE J. Quantum Electron. 46, 1158-1169 (2010).   DOI
8 M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, "Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform," Opt. Express 21, 17814-17823 (2013).   DOI
9 T. Barwicz and H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides," J. Light. Technol. 23, 2719 (2005).   DOI
10 M. K. Chin and S. T. Ho, "Design and modeling of wave-guide-coupled single-mode microring resonators," J. Light. Technol. 16, 1433 (1998).   DOI
11 K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006).   DOI
12 M. H. P. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, "Coupling ideality of integrated planar high-Q microresonators," Phys. Rev. Appl. 7, 024026 (2017).   DOI
13 S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003).   DOI
14 T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, "Microresonator-based optical frequency combs," Science 332, 555-559 (2011).   DOI
15 Y. Liu, T. J. Chang, and A. E. Craig, "Coupled mode theory for modeling microring resonators," Opt. Eng. 44, 084601 (2005).   DOI
16 S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," IEEE Photonics Technol. Lett. 11, 691-693 (1999).   DOI
17 X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, "Mode-locked dark pulse Kerr combs in normal-dispersion microresonators," Nat. Photonics 9, 594-600 (2015).   DOI
18 A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, "On-chip optical squeezing," Phys. Rev. Appl. 3, 044005 (2015).   DOI
19 R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, H.-S. Tsai, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, "Large-scale photonic integrated circuits," IEEE J. Sel. Top. Quantum Electron. 11, 50-65 (2005).   DOI
20 B. Jalali and S. Fathpour, "Silicon Photonics," J. Light. Technol. 24, 4600-4615 (2006).   DOI
21 C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science 351, 1176-1180 (2016).   DOI
22 K. Okamoto, Fundamentals of Optical Waveguides (Academinc press, MA, USA. 2006).
23 W.-P. Huang, "Coupled-mode theory for optical waveguides: an overview," J. Opt. Soc. Am. A 11, 963-983 (1994).   DOI
24 H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, NJ, USA, 1984).
25 A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, MA , USA. 2005).
26 M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).   DOI
27 J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, "Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding," Opt. Express 19, 24090-24101 (2011).   DOI
28 L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, "WDM-compatible mode-division multiplexing on a silicon chip," Nat. Commun. 5, 3069 (2014).   DOI
29 T. W. Mark, M. S. Jeffrey, S. O. Jason, J. R. Rajeev, S. Vladimir, and A. P. Milos, "Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips," Proc. SPIE 8991, 89910B (2014).
30 A. Prinzen, J. Bolten, M. Waldow, and H. Kurz, "Study on fabrication tolerances of SOI based directional couplers and ring resonators," Microelectron. Eng. 121, 51-54 (2014).   DOI