Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.3.278

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography  

Song, Woosub (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute)
Lee, Seung Seok (Department of Physics, Chosun University)
Lee, Byeong-il (Medical & Bio Photonics Research Center, Korea Photonics Technology Institute)
Choi, Eun Seo (Department of Physics, Chosun University)
Publication Information
Current Optics and Photonics / v.5, no.3, 2021 , pp. 278-288 More about this Journal
Abstract
We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.
Keywords
Microsphere; Mie scattering; Scattering coefficient; Spectroscopic OCT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).   DOI
2 S. A. Alexandrov, H. M. Subhash, A. Zam, and M. Leahy, "Nano-sensitive optical coherence tomography," Nanoscale 6, 3545-3549 (2014).   DOI
3 N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).   DOI
4 W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).   DOI
5 M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).   DOI
6 P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Haeusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin," Proc SPIE 3567, 78-88 (1999).
7 S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003).   DOI
8 S. Schubert, M. Hosking, E. Balbacid, F. Berger, C. Voss, N. Lee, and K. Harris, "Optical coherence tomography (OCT) detects early coronary changes related to cardiac allograft vasculopathy in pediatric transplant recipients: results from a multicenter study group," Thorac. Cardiovasc. Surg. 65, S111-S142 (2017).
9 C. Yang, "Molecular contrast optical coherence tomography: a review," Photochem. Photobiol. 81, 215-237 (2005).   DOI
10 S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005).   DOI
11 T. D. Wang and J. Van Dam, "Optical biopsy: a new frontier in endoscopic detection and diagnosis," Clin. Gastroenterol. Hepatol. 2, 744-753 (2004).   DOI
12 D. R. Bauer, X. Wang, J. Vollin, H. Xin, and R. S. Witte, "Spectroscopic thermoacoustic imaging of water and fat composition," Appl. Phys. Lett. 101, 033705 (2012).   DOI
13 C. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).   DOI
14 C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4802 (2004).   DOI
15 A. L. Oldenburg, C. Xu, and S. A. Boppart, "Spectroscopic optical coherence tomography and microscopy," IEEE J. Sel. Top. Quantum Electron. 13, 1629-1640 (2007).   DOI
16 N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, "Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy," Opt. Lett. 34, 3746-3748 (2009).   DOI
17 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).   DOI
18 M. Wojtkowski, V. J. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).   DOI
19 S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ㎛ wavelength," Opt. Express 11, 3598-3604 (2003).   DOI
20 K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, "Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles," Cancer Res. 63, 1999-2004 (2003).
21 V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Fitzmaurice, M. Crawford, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000).   DOI
22 A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26, 322-324 (2001).   DOI
23 S. A. Alexandrov, S. Uttam, R. K. Bista, C. Zhao, and Y. Liu, "Real-time quantitative visualization of 3D structural information," Opt. Express 20, 9203-9214 (2012).   DOI
24 S. Srinivas, M. G. Nittala, A. Hariri, M. Pfau, J. Gasperini, M. Ip, and S. R. Sadda, "Quantification of intraretinal hard exudates in eyes with diabetic retinopathy by optical coherence tomography," Retina 38, 231-236 (2018).   DOI
25 U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).   DOI
26 J. W. Pyhtila, R. N. Graf, and A. Wax, "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system," Opt. Express 11, 3473-3484 (2003).   DOI
27 S. A. Alexandrov, S. Uttam, R. K. Bista, K. Staton, and Y. Liu, "Spectral encoding of spatial frequency approach for characterization of nanoscale structures," Appl. Phys. Lett. 101, 033702 (2012).   DOI
28 S. A. Alexandrov and D. D. Sampson, "Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency," J. Opt. A: Pure Appl. Opt. 10, 025304 (2008).   DOI
29 C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, "Feasibility of field-based light scattering spectroscopy," J. Biomed. Opt. 5, 138-143 (2000).   DOI
30 R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13, 4693-4698 (2005).   DOI
31 L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).   DOI
32 C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, "Depth resolved detection of lipid using spectroscopic optical coherence tomography," Biomed. Opt. Express 4, 1269-1284 (2013).   DOI
33 C. Matzler, "MATLAB functions for Mie scattering and absorption. Version 2," Research Report No. 2002-11 (Institut fur Angewandte Physik (IAP), Bern, Switzerland, 2002).