Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.3.250

Midinfrared Pulse Compression in a Dispersion-decreasing and Nonlinearity-increasing Tapered As2S3 Photonic Crystal Fiber  

Shen, Jianping (College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications)
Zhang, Siwei (College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications)
Wang, Wei (College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications)
Li, Shuguang (State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University)
Zhang, Song (State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University)
Wang, Yujun (State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University)
Publication Information
Current Optics and Photonics / v.5, no.3, 2021 , pp. 250-260 More about this Journal
Abstract
A tapered As2S3 photonic crystal fiber (PCF) with four layers of air holes in a hexagonal array around the core is designed in this paper. Numerical simulation shows that the dispersion D decreases and the nonlinearity coefficient γ increases from the thick to the thin end along the tapered PCF. We simulate the midinfrared pulse compression in the tapered As2S3 PCF using the adaptive split-step Fourier method. Initial Gaussian pulses of 4.4 ps and a central wavelength of 2.5 ㎛ propagating in the tapered PCF are located in the anomalous dispersion region. With an average power of assumed input pulses at 3 mW and a repetition frequency of 81.0 MHz, we theoretically obtain a pulse duration of 56 fs and a compression factor of 78 when the pulse propagates from the thick end to the thin end of the tapered PCF. When confinement loss in the tapered PCF is included in the simulation, the minimum pulse duration reaches 72 fs; correspondingly, the maximum compression factor reaches 61. The results show that in the anomalous-dispersion region, midinfrared pulses can be efficiently compressed in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 PCF. Due to confinement loss in the tapered fiber, the efficiency of pulse compression is suppressed.
Keywords
$As_2S_3$ photonic crystal fiber; Mid-infrared; Pulse compression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Balani, G. Singh, M. Tiwari, V. Janyani, and A. K. Ghunawat, "Supercontinuum generation at 1.55 ㎛ in As2S3 core photonic crystal fiber," Appl. Opt. 57, 3524-3533 (2018).   DOI
2 H. Pakarzadeh, "Parametric amplification in tapered photonic crystal fibers with longitudinally decreasing zero-dispersion wavelength," Optik 126, 5509-5512 (2015).   DOI
3 J. Hu, B. S. Marks, and C. R. Menyuk, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006).   DOI
4 M. Wen-Wen, L. Shu-Guang, Y. Guo-Bing, F. Bo, and Z. Lei, "Study on pulse compression in tapered holey fibres," Chin. Phys. B 19, 104208 (2010).   DOI
5 F. Li, Q. Li, J. Yuan, and P. K. A. Wai, "Highly coherent super-continuum generation with picosecond pulses by using selfsimilar compression," Opt. Express 22, 27339-27354 (2014).   DOI
6 H. Song, B. Liu, W. Chen, Y. Li, Y. Song, S. Wang, L. Chai, C. Wang, and M. Hu, "Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses," Opt. Express 26, 26411-26421 (2018).   DOI
7 H. Pakarzadeh, M.Taghizadeh, and M. Hatami, "Designing a photonic crystal fiber for an ultra-broadband parametric amplification in telecommunication region," J. Nonlinear Opt. Phys. Mater. 25, 1650023 (2016).   DOI
8 Z. Shumin, L. Fuyun, X. Wencheng, Y. Shiping, W. Jian, and D. Xiaoyi, "Enhanced compression of high-order solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering," Opt. Commun. 237, 1-8 (2004).   DOI
9 A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).   DOI
10 M. D. Pelusi and H.-F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997).   DOI
11 J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, "Optical pulse compression in dispersion decreasing photonic crystal fiber," Opt. Express 15, 13203-13211 (2007).   DOI
12 X.-Y. Wang, S.-G. Li, S. Liu, G.-B. Yin, and J.-S. Li, "Generation of mid-infrared broadband polarized supercontinuum in As2Se3 photonic crystal fibers," Chinese Phys. B 21, 054220 (2012).   DOI
13 M. Taghizadeh, M. Hatami, H. Pakarzadeh, and M. K. Tavassoly, "Pulsed optical parametric amplification based on photonic crystal fibres," J. Mod. Opt. 64, 357-365 (2017).   DOI
14 H. Pakarzadeh and M. Sharifian, "Modelling of a variable optical switch based on the parametric amplification in a photonic crystal fibre," J. Mod. Opt. 65, 1855-1859 (2018).   DOI
15 I. Martial, D. Papadopoulos, M. Hanna, F. Druon, and P. Georges, "Nonlinear compression in a rod-type fiber for high energy ultrashort pulse generation," Opt. Express 17, 11155-11160 (2009).   DOI
16 H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterization, and applications," Appl. Phys. B 81, 377-387 (2005).   DOI
17 H. Pakarzadeh and S. M. Rezaei, "Modeling of dispersion and nonlinear characteristics of tapered photonic crystal fibers for applications in nonlinear optics," J. Mod. Opt. 63, 151-158 (2016).   DOI
18 J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).   DOI
19 A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999).   DOI
20 J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).   DOI
21 T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber," IEEE Photon. Technol. Lett. 12, 1016-1018 (2000).   DOI
22 C. L. Arnold, S. Akturk, M. Franco, A. Couairon, and A. Mysyrowicz, "Compression of ultrashort laser pulses in planar hollow waveguides: a stability analysis," Opt. Express 17, 11122-11129 (2009).   DOI
23 D. Wang, Y. Leng, and Z. Xu, "Optical pulse compression of ultrashort laser pulses in a multi-hollow-core fiber," Opt. Commun. 285, 2418-2421 (2012).   DOI
24 A. A. Voronin and A. M. Zheltikov, "Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths," Phys. Rev. A 78, 063834 (2008).   DOI
25 A. M. Zheltikov, "Spectral broadening and compression to few-cycle pulse widths in the regime of soliton-self-frequency shift," Opt. Soc. Am. B 26, 946-950 (2009).   DOI
26 Q. Jing, H. Ma, X. Zhang, Y. Huang, and X. Ren, "Supercontinuum broadening in all-normal dispersion photonic crystal fiber by means of soliton compression in standard single-mode fiber," Opt. Commun. 285, 2917-2923 (2012).   DOI
27 K.-T. Chan and W.-H. Cao, "Enhanced soliton-effect pulse compression by cross-phase modulation in optical fibers," Opt. Commun. 178, 79-88 (2000).   DOI
28 P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-㎛-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000).   DOI
29 X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001).   DOI
30 S. Hadrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tunnermann, "High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system," Opt. Express 17, 3913-3922 (2009).   DOI
31 K.-T. Chan and W.-H. Cao, "Improved soliton-effect pulse compression by combined action of negative third-order dispersion and Raman self-scattering in optical fibers," J. Opt. Soc. Am. B 15, 2371-2735 (1998).   DOI
32 J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers," Opt. Express 18, 6722-6739 (2010).   DOI
33 L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).   DOI
34 A. V. Husakou and J. Herrmann, "Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses," Appl. Phys. B 77, 227-234 (2003).   DOI
35 M. Bass, Handbook of Optics, (McGraw-Hill Professional, NY, USA. 1994), Vol. 2.
36 S. Musikant, Optical Materials, a Series of Advances (Marcel Dekker, NY, USA. 1990), Vol. 1, pp. 275-276.
37 B. T. Kuhlmey, H. C. Nguyen, M. J. Steel, and B. J. Eggleton, "Confinement loss in adiabatic photonic crystal fiber tapers," J. Opt. Soc. Am. B 23, 1965-1974 (2006).   DOI
38 G. P. Agrawal, "Nonlinear Fiber Optics," in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sorensen, and A. C. Scott, Eds., 3rd ed. (Springer, Berlin, Germany. 2001).
39 A. C. Judge, S. A. Dekker, R. Pant, C. M. de Sterke, and B. J. Eggleton, "Soliton self-frequency shift performance in As2S3 waveguides," Opt. Express 18, 14960-14968 (2010).   DOI
40 S. Kalra, S. Vyas, M. Tiwari, B. Oleg, and G. Singh, "Highly nonlinear multi-material chalcogenide spiral photonic crystal fiber for supercontinuum generation," Acta Phts. Pol. A 133, 1000-1002 (2018).   DOI
41 T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, and C. R. Pollock, "Mode-locked Cr2+:ZnSe laser," Opt. Lett. 25, 168-170 (2000).   DOI
42 J. S. Nelson, J. L. McCullough, T. C. Glenn, W. H. Wright, L.-H. L. Liaw, and S. L. Jacques, "Mid-Infrared laser ablation of stratum corneum enhances in vitro percutaneous transport of drugs," J. Invest. Dermatol. 97, 874-879 (1991).   DOI
43 S. Li, L. Zhang, B. Fu, Y. Zheng, Y. Han, and X. Zhao, "Wave breaking in tapered holey fibers," Chin. Opt. Lett. 9, 030601 (2011).   DOI