Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.3.213

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception  

Lee, Hyun Joon (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute)
Yu, Ye Jin (Department of Physics, Pusan National University)
Kim, Jang-Yeol (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute)
Lee, Jaewoo (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute)
Moon, Han Seb (Department of Physics, Pusan National University)
Cho, In-Kui (Radio & Satellite Research Division, Electronics and Telecommunications Research Institute)
Publication Information
Current Optics and Photonics / v.5, no.3, 2021 , pp. 213-219 More about this Journal
Abstract
We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.
Keywords
Atomic magnetometer; Magnetic sensor; Sensitivity; Very low frequency; Wireless communication;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. J. Berglund, L. R. Hunter, D. Krause Jr., E. O. Prigge, M. S. Ronfeldt, and S. K. Lamoreaux, "New limits on local Lorentz invariance from Hg and Cs magnetometers," Phys. Rev. Lett. 75, 1879-1882 (1995).   DOI
2 M. N. Nabighian, V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J.W. Peirce, J. D. Phillips, and M. E. Ruder, "The historical development of the magnetic method in exploration," Geophysics 70, 1ND-Z113 (2005).   DOI
3 V. Mathe, F. Leveque, P.-E. Mathe, C. Chevallier, and Y. Pons, "Soil anomaly mapping using a cesium magnetometer: limits in the low magnetic amplitude case," J. Appl. Geophys. 58, 202-217 (2006).   DOI
4 H. J. Lee, S.-J. Lee, J. H. Shim, H. S. Moon, and K. Kim, "Insitu Overhauser-enhanced nuclear magnetic resonance at less than 1μT using an atomic magnetometer," J. Magn. Reason. 300, 149-152 (2019).   DOI
5 S.-J. Lee, K. Jeong, J. H. Shim, H. J. Lee, S. Min, H. Chae, S. K. Namgoong, and K. Kim, "SQUID-based ultralow-field MRI of a hyperpolarized material using signal amplification by reversible exchange," Sci. Rep. 9, 12422 (2019).   DOI
6 J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, NY, USA. 1975), Chapter 5.
7 C. E. Shannon, "Communication in the Presence of Noise," Proc. IRE 37, 10-21 (1949).   DOI
8 I. F. Akyildiz, P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Commun. Mag. 53, 42-48 (2015).
9 S. Tumanski, "Induction coil sensors-A review," Meas. Sci. Technol. 18, R31 (2007).   DOI
10 I. M. Savukov and M. V. Romalis, "NMR detection with an atomic magnetometer," Phys. Rev. Lett. 94, 123001 (2005).   DOI
11 I. Savukov, T. Karaulanov, and M. G. Boshier, "Ultra-sensitive high-density Rb-87 radio-frequency magnetometer," Appl. Phys. Lett. 104, 023504 (2014).   DOI
12 D. A. Keder, D. W. Prescott, A. W. Conovaloff, and K. L. Sauer, "An unshielded radio-frequency atomic magnetometer with sub-femtoTesla sensitivity," AIP Adv. 4, 127159 (2014).   DOI
13 C. Deans, L. Marmugi, and F. Renzoni, "Sub-picotesla widely tunable atomic magnetometer operating at room-temperature in unshielded environments," Rev. Sci. Inst. 89, 083111 (2018).   DOI
14 S. Appelt, A. B.-A. Baranga, A. R. Young, and W. Happer, "Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells," Phys. Rev. A 59, 2078 (1999).   DOI
15 D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley Pub., MA, USA. 1989), Chapter 8.
16 S. Busch, M. Hatridge, M. Mossle, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, "Measurements of T1-relaxation in ex vivo prostate tissue at 132μT," Magn. Reason. Med. 67, 1138-1145 (2012).   DOI
17 D. Bear, R. E. Stoner, R. L. Walsworth, V. Alan Kostelecky, and C. D. Lane, "Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser," Phys. Rev. Lett. 89, 5038-5041 (2000).
18 S. Groeger, A. S. Pazgalev, and A. Weis, "Comparison of discharge lamp and laser pumped cesium magnetometers," Appl. Phys. B 80, 645-654 (2005).   DOI
19 S. K. Lee, M. Mossle, W. Myers, N. Kelso, A. H. Trabesinger, A. Pines, and J. Clarke, "SQUID-detected MRI at 132μT with T1-weighted contrast established at 10μT-300 mT," Magn. Reason. Med. 53, 9-14 (2005).   DOI
20 I. Hilschenz, S. Oh, S.-J. Lee, K. K. Yu, S.-M. Hwang, K. Kim, and J. H. Shim, "Dynamic nuclear polarization of liquids at one microtesla using circularly polarised RF with application to millimetre resolution MRI," J. Magn. Reason. 305, 138-145 (2019).   DOI
21 M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, "NIOSH-sponsored research in through-the-earth communications for mines: a status report," IEEE Trans. Ind. Appl. 48, 1700-1707 (2012).   DOI
22 V. Gerginov, F. C. S. da Silva, and D. Howe, "Prospects for magnetic field communications and location using quantum sensors," Rev. Sci. Inst. 88, 125005 (2017).   DOI