Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.2.180

Evanescent-field Q-switched Yb:YAG Channel Waveguide Lasers with Single- and Double-pass Pumping  

Bae, Ji Eun (Department of Physics, Korea Advanced Institute of Science and Technology)
Choi, Sun Young (Department of Physics, Korea Advanced Institute of Science and Technology)
Krankel, Christian (Zentrum fur Lasermaterialien, Leibniz-Institut fur Kristallzuchtung)
Hasse, Kore (Institut fur Laser-Physik, Universitat Hamburg)
Rotermund, Fabian (Department of Physics, Korea Advanced Institute of Science and Technology)
Publication Information
Current Optics and Photonics / v.5, no.2, 2021 , pp. 180-185 More about this Journal
Abstract
A femtosecond-laser inscribed Yb:YAG surface channel waveguide (WG) laser with single-walled carbon nanotubes deposited on the top surface of the WG was passively Q-switched by evanescent field interaction. Q-switched operation of the 14-mm-long compact Yb:YAG WG laser was achieved near 1031 nm with two different pumping schemes (single- and double-pass pumping) with an output coupling transmission of 91%. The Q-switched pulse characteristics depending on the absorbed pump power were investigated for both pumping geometries and analyzed in detail based on theoretical modeling. The best performances (energy/pulse duration) for each configuration were 204.4 nJ/75 ns at a repetition rate of 1.87 MHz, and 201.1 nJ/81 ns at 1.75 MHz for single- and double-pass pumping, respectively.
Keywords
Carbon nanotubes; Pulsed operation; Saturable absorbers; Waveguide lasers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Tang, W. Zhang, X. Liu, S. Liu, R. Stoian, and G. Cheng, "Tubular depressed cladding waveguide laser realized in Yb:YAG by direct inscription of femtosecond laser," J. Opt. 17, 105803 (2015).   DOI
2 S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Krankel, G. Huber, and F. Rotermund, "Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes," Opt. Express 23, 7999-8005 (2015).   DOI
3 M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D.-I. Yeom, C. Krankel, and F. Rotermund, "Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation," Opt. Mater. Express 6, 2468-2474 (2016).   DOI
4 S. Hakobyan, V. J. Wittwer, K. Hasse, C. Krankel, T. Sudmeyer, and T. Calmano, "Highly efficient Q-switched Yb:YAG channel waveguide laser with 5.6 W of average output power," Opt. Lett. 41, 4715-4718 (2016).   DOI
5 S. Y. Choi, T. Calmano, F. Rotermund, and C. Krankel, "2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser," Opt. Express 26, 5140-5145 (2018).   DOI
6 R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, "1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler," Opt. Express 21, 7943-7950 (2013).   DOI
7 A. Choudhary, S. Dhingra, B. D'Urso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, "Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber," Opt. Lett. 39, 4325-4328 (2014).   DOI
8 J. E. Bae, X. Mateos, M. Aguilo, F. Diaz, J. R. V. de Aldana, C. Romero, H. Lee, and F. Rotermund, "Transition of pulsed operation from Q-switching to continuous-wave mode-locking in a Yb:KLuW waveguide laser," Opt. Express 28, 18027-18034 (2020).   DOI
9 A. Choudhary, S. Dhingra, B. D'Urso, P. Kannan, and D. P. Shepherd, "Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers," IEEE Photon. Technol. Lett. 27, 646-649 (2015).   DOI
10 Y. Ren, C. Cheng, Y. Jia, Y. Jiao, D. Li, M. D. Mackenzie, A. K. Kar, and F. Chen, "Switchable single-dual-wavelength Yb,Na:CaF2 waveguide lasers operating in continuous-wave and pulsed regimes," Opt. Mater. Express 8, 1633-1641 (2018).   DOI
11 J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, "Graphene Q-switched Yb:KYW planar waveguide laser," AIP Adv. 5, 017110 (2015).   DOI
12 A. Choudhary, S. J. Beecher, S. Dhingra, B. D'Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, and D. P. Shepherd, "456-mW graphene Q-switched Yb: yttria waveguide laser by evanescent-field interaction," Opt. Lett. 40, 1912-1915 (2015).   DOI
13 A. Sato, K. Asai, and T. Itabe, "Double-pass-pumped Tm:YAG laser with a simple cavity configuration," Appl. Opt. 37, 6395-6400 (1998).   DOI
14 J. W. Kim, S. Y. Choi, J. E. Bae, M. H. Kim, Y. U. Jeong, E. Kifle, X. Mateos, M. Aguilo, F. Diaz, U. Griebner, V. Petrov, G.-H. Kim, and F. Rotermund, "Comparative study of Yb:KYW planar waveguide lasers Q-switched by direct-and evanescent-field interaction with carbon nanotubes," Opt. Express 27, 1488-1496 (2019).   DOI
15 J. E. Bae, T. G. Park, E. Kifle, X. Mateos, M. Aguilo, F. Diaz, C. Romero, J. R. V. de Aldana, H. Lee, and F. Rotermund, "Carbon nanotube Q-switched Yb:KLuW surface channel waveguide lasers," Opt. Lett. 45, 216-219 (2020).   DOI
16 R. J. Beach, "CW Theory of quasi-three level end-pumped laser oscillators," Opt. Commun. 123, 385-393 (1996).   DOI
17 C. Li, D. Shen, J. Song, N. S. Kim, and K.-I. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999).   DOI
18 X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguilo, F. Diaz, U. Griebner, and V. Petrov, "Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry," Opt. Lett. 42, 3490-3493 (2017).   DOI
19 S. Hong, B. Kong, Y. S. Lee, and K. Oh, "Optimization of diode-pumped cesium vapor laser using frequency locked pump laser," Curr. Opt. Photon. 2, 443-447 (2018).   DOI
20 R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, "Passive Q-switching of microchip lasers based on Ho:YAG ceramics," Appl. Opt. 55, 4877-4887 (2016).   DOI
21 F. Chen and J. R. V. de Aldana, "Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining," Laser Photonics Rev. 8, 251-275 (2014).   DOI
22 T. Calmano, A.-G. Paschke, S. Muller, C. Krankel, and G. Huber, "Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription," Opt. Express 21, 25501-25508 (2013).   DOI
23 T. Calmano, M. Ams, P. Dekker, M. J. Withford, and C. Krankel, "2 W single-longitudinal-mode Yb:YAG distributed-feedback waveguide laser," Opt. Lett. 42, 2734-2737 (2017).   DOI
24 E. Kifle, P. Loiko, C. Romero, J. R. V. de Aldana, V. Zakharov, A. Veniaminov, U. Griebner, V. Petrov, P. Camy, A. Braud, M. Aguilo, F. Diaz, and X. Mateos, "Ultrafast laser inscription and -2 ㎛ laser operation of Y-branch splitters in monoclinic crystals," J. Lightwave Technol. 38, 4374-4384 (2020).   DOI
25 T. Calmano and S. Muller, "Crystalline waveguide lasers in the visible and near-infrared spectral range," IEEE J. Sel. Top. Quantum Electron. 21, 401-413 (2015).   DOI