Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.2.101

Simulation of a Laser Tomography Adaptive Optics with Rayleigh Laser Guide Stars for the Satellite Imaging System  

Ahn, Kyohoon (Laser R&D Team, LIG Nex1)
Lee, Sung-Hun (Laser R&D Team, LIG Nex1)
Park, In-Kyu (Laser R&D Team, LIG Nex1)
Yang, Hwan-Seok (Laser R&D Team, LIG Nex1)
Publication Information
Current Optics and Photonics / v.5, no.2, 2021 , pp. 101-113 More about this Journal
Abstract
Adaptive optics (AO) systems are becoming more complex to improve their optical performance and enlarge their field of view, so it is a hard and time consuming process to set up and optimize the components of AO systems with actual implementation. However, simulations allow AO scientists and engineers to experiment with different optical layouts and components without needing to obtain and prepare them physically. In this paper, we introduce a new AO simulation named the Korea Adaptive Optics Simulation (KAOS), independently developed by LIG Nex1. We verified the performance of KAOS by comparing with other AO simulation tools. In the comparison simulation, we confirmed the results from KAOS and other AO simulation tools were very similar. Also, we proposed a laser tomography AO system with five Rayleigh laser guide stars (LGSs) optimized by using KAOS to overcome the disadvantages of the AO system with a single sodium LGS for the satellite imaging system. We verified the performance of the proposed AO system using KAOS, and the simulation result showed averaged Strehl ratio of 0.37.
Keywords
Adaptive optics; Atmospheric turbulence; Laser guide star; Numerical simulation; Wavefront sensing and correction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. H. Southwell, "Wave-front estimation from wave-front slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980).   DOI
2 X. Cheng, J. Wang, X. Liu, L. Dong, and C. Liu, "Simulations and experiments on the noise suppression in the calibration of a 961-element adaptive optics system," Optik 200, 163419 (2020).   DOI
3 L. Wang, X. Lin, X. Liu, and P. Wei, "Adaptive optics system based on the Southwell geometry and improvement on control stability," Opt. Commun. 390, 105-110 (2017).   DOI
4 J. Hermann, "Least-squares wave front errors of minimum norm," J. Opt. Soc. Am. 70, 28-35 (1980).   DOI
5 K. Ahn, H.-G. Rhee, H.-J. Lee, J.-H. Lee, H. S. Yang, and H. Kihm, "Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics," Korean J. Opt. Photon. 27, 106-113 (2016).   DOI
6 F. Vidal, E. Gendron, and G. Rousset, "Tomography approach for multi-object adaptive optics," J. Opt. Soc. Am. A 27, A253-A264 (2010).
7 M. Le Louarn, C. Verinaud, V. Korkiakoski, and E. Fedrigo, "Parallel simulation tools for AO on ELTs," Proc. SPIE 5490, 705-712 (2004).   DOI
8 L. Jolissaint, J.-P. Veran, and R. Conan, "Analytical modelling of adaptive optics: foundations of the phase spatial power spectrum approach," J. Opt. Soc. Am. A 23, 382-394 (2006).   DOI
9 D. Gratadour, M. Puech, C. Verinaud, P. Kestener, M. Gray, C. Petit, J. Brule, Y. Clenet, F. Ferreira, E. Gendron, M. Laine, A. Sevin, G. Rousset, F. Hammer, I. Jegouzo, Michele Paillous, S. Taburet, Y. Yang, J.-L. Beuzit, A. Carlotti, M. Westphal, B. Epinat, M. Ferrari, T. Gautrais, J. C. Lambert, B. Neichel, and S. Rodionov, "COMPASS: an efficient, scalable and versatile numerical platform for the development of ELT AO systems," Proc. SPIE 9148, 91486O (2014).   DOI
10 R. Conan and C. Correia, "Object-oriented Matlab adaptive optics toolbox," Proc. SPIE 9148, 91486C (2014).   DOI
11 A. Tokovinin, "Seeing improvement with ground-layer adaptive optics," Publ. Astron. Soc. Pac. 116, 941-951 (2004).   DOI
12 E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, A. Amorim, and J. Lima, "MAD on sky results in star oriented mode," Proc. SPIE 7015, 70150F (2008).   DOI
13 C. A. Primmerman, D. V. Murphy, D. A. Page, B. G. Zollars, and H. T. Barclay, "Compensation of atmospheric optical distortion using a synthetic beacon," Nature 353, 141-143 (1991).   DOI
14 S. Rabien, N. Ageorges, L. Barl, U. Beckmann, T. Blumchen, M. Bonaglia, J. Borelli, J. Brynnel, L. Busoni, L. Carbonaro, R. Davies, M. Deysenroth, O. Durney, M. Elberich, S. Esposito, V. Gasho, W. Gassler, H. Gemperlein, R. Genzel, R. Green, M. Haug, M. L. Hart, P. Hubbard, S. Kanneganti, E. Masciadri, J. Noenickx, G. Orban de Xivry, D. Peter, A. Quirrenbach, M. Rademacher, H. W. Rix, P. Salinari, C. Schwab, J. Storm, L. Struder, M. Thiel, G. Weigelt, and J. Ziegleder, "ARGOS: the laser guide star system for the LBT," Proc. SPIE 7736, 77360E (2010).   DOI
15 C. Benn, D. Abrams, T. Agocs, D. Cano, T. Gregory, J. C. Guerra, O. Martin, T. Moris, R. Myers, S. Rix, R. Rutten, I. Skillen, J. Skvarc, and S. Tulloch, "GLAS/NAOMI: ground-layer AO at the William Herschel Telescope," Proc. SPIE 7015, 701523 (2008).   DOI
16 T. J. Morris, "An experimental Rayleigh laser guide star ground layer adaptive optics system for the William Herschel Telescope," Ph. D. dissertation, University of Durham, England (2005).
17 A. Reeves, "Soapy: an adaptive optics simulation written purely in Python for rapid concept development," Proc. SPIE 9909, 99097F (2016).   DOI
18 L. A. Thompson and C. S. Gardner, "Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy," Nature 328, 229-231 (1987).   DOI
19 J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993).   DOI
20 O. Guyon, "Extreme adaptive optics," Annu. Rev. Astron. Astrophys. 56, 315-355 (2018).   DOI
21 L. A. Thompson and R. M. Castle, "Experimental demonstration of a Rayleigh-scattered laser guide star at 351 nm," Opt. Lett. 17, 1485-1487 (1992).   DOI
22 J. H. Lee, S. E. Lee, and Y. J. Kong, "Performance prediction of a laser-guide star adaptive optics system for a 1.6 m telescope," Curr. Opt. Photon. 2, 269-279 (2018).   DOI
23 J. M. Beckers, "Increasing the size of the isoplanatic patch with multiconjugate adaptive optics," ESO Conference and Workshop Proceedings 30, 693-703 (1988).
24 J.-G. Cuby, S. Morris, T. Fusco, M. Lehnert, P. Parr-Burman, G. Rousset, J.-P. Amans, S. Beard, I. Bryson, M. Cohen, N. Dipper, C. Evans, M. Ferrari, E. Gendron, J.-L. Gimenez, D. Gratadour, P. Hastings, Z. Hubert, E. Hugot, P. Jagourel, P. Laporte, V. Lebrun, D. Le Mignant, F. Madec, R. Myers, B. Neichel, T. Morris, C. Robert, H. Schnetler, M. Swinbank, G. Talbot, W. Taylor, F. Vidal, S. Vives, P. Vola, N. Welikala, and M. Wells,"Eagle: a MOAO fed multi-IFU NIR workhorse for E-ELT," Proc. SPIE 7735, 77352D (2010).   DOI
25 M. Hart, "Recent advances in astronomical adaptive optics," Appl. Opt. 49, D17-D29 (2010).   DOI
26 Matlab® R2018b. The MathWorks Inc., Natick, Massachusetts (2018).
27 J. D. Schmidt, Numerical simulations of optical wave propagation with examples in MATALB® (SPIE Press, Bellingham, WA, USA. 2010).
28 D. P. Greenwood, "Bandwidth specification for adaptive optics systems," J. Opt. Soc. Am. 67, 390-393 (1977).   DOI
29 R. K. Tyson, Principles of Adaptive Optics, 4th ed., (CRC Press, Boca Raton, FL, USA. 2015).
30 R. V. Shack, and B. C. Platt, "Production and use of lenticular Hartmann screen," J. Opt. Soc. Am. 61, 656 (1971).
31 K. Ahn, H.-G. Rhee, H.-S. Yang, and H. Kihm, "CVD SiC deformable mirror with monolithic cooling channels," Opt. Express 26, 9724-9739 (2018).   DOI
32 R. Ragazzoni, "Pupil plane wavefront sensing with an oscillating prism," J. Mod. Opt. 43, 289-293 (1996).   DOI