Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.1.045

Effect of Out-of-plane Retardation of Substrate Film on the Viewing-angle Dependence of Transmittance in a Display Device  

Ahn, Sumin (Future Semiconductor Convergence Technology Research Center, Division of Electronics Engineering, Jeonbuk National University)
Lee, Ji-Hoon (Future Semiconductor Convergence Technology Research Center, Division of Electronics Engineering, Jeonbuk National University)
Publication Information
Current Optics and Photonics / v.5, no.1, 2021 , pp. 45-51 More about this Journal
Abstract
The effect of the out-of-plane retardation (Rth) of a substrate film on the viewing-angle dependence of transmittance (TR) in a display device was investigated. When the polarization state of input light deviates from the transmission axis of the polarizer, Rth of the substrate film induces inhomogeneous viewing-angle dependence of TR. The inhomogeneity of TR gets worse for greater values of of Rth. The inhomogeneous TR profile can be eliminated by inserting compensation films, which convert the input polarization state to the linear polarization state parallel to the transmission axis of the polarizer.
Keywords
Liquid crystal display; Out-of-plane retardation; Substrate film; Viewing angle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Chen and P.-J. Bos, "Simple four-domain twisted nematic liquid crystal display," Appl. Phys. Lett. 67, 1990-1992 (1995).   DOI
2 M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multidomain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).   DOI
3 H. J. Ryu, J. Hwang, J. Kim, and J.-H. Lee, "Dependence of the birefringence of polystyrene film on the stretching conditions," Appl. Opt. 57, 268-272 (2018).   DOI
4 J. Kim and J.-H. Lee, "Stokes polarimetry method for measuring in-plane retardation and out-of-plane retardation of optical wave," IEEE Trans. Instrum. Meas. 69, 9805-9812 (2020).   DOI
5 P. Yeh and C. Gu, "Birefringent optical compensators for TNLCDs," Proc. SPIE 3421, 224-235 (1998).
6 J. Chen, K.-H. Kim, J.-J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "31.2: Optimum film compensation modes for TN and VA LCDs," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 29, 315-318 (1998).   DOI
7 Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. 37, 4822-4828 (1998).   DOI
8 Y. Hisatake, Y. Kawata, and A. Murayama, "31.3: Viewing angle controllable LCD using variable optical compensator and variable diffuser," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 36, 1218-1221 (2005).   DOI
9 X. Zhu, Z. Ge, and S.-T. Wu, "Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays," J. Disp. Technol. 2, 2-20 (2006).   DOI
10 Y.-C. Yang and D.-K. Yang, "P-199: Achromatic reduction of off-axis light leakage in LCDs by self-compensated phase retardation (SPR) film," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 39, 1955-1958 (2008).   DOI
11 S.-W. Oh and T.-H Yoon, "Elimination of leakage over the entire viewing cone in a homogeneously-aligned liquid crystal cell," Opt. Express 22, 5808-5817 (2014).   DOI
12 H. Mori, "The wide view (WV) film for enhancing the field of view of LCDs," J. Disp. Technol. 1, 179 (2005).   DOI
13 H. Mori, M. Nagai, H. Nakayama, Y. Itoh, K. Kamada, K. Arakawa, and K. Kawata, "Novel optical compensation method based upon a discotic optical compensation film for wideviewing-angle LCDs," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 34, 1058-1064 (2003).   DOI
14 Y.-C. Yang and D.-K. Yang, "Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays," J. Opt. A: Pure Appl. Opt. 11, 1055002 (2009).
15 P. Yeh, "Extended Jones matrix method," J. Opt. Soc. Am. A 72, 507-513 (1982).   DOI
16 P. Yeh, and C. Gu, Optics of liquid crystal displays, 2nd ed., (John Wiley & Sons, NJ, USA. 1999), Chap. 9.
17 J. Hwang, S. Yang, Y.-J. Choi, Y. Lee, K.-W. Jeong, and J.-H. Lee, "Single layer retarder with negative dispersion of birefringence and wide field-of-view," Opt. Express 24, 19934-19939 (2016).   DOI
18 K.-H. Kim, K.-H. Lee, S.-B. Park, and J.-K. Song, "Liquid crystal display having a wide viewing angle," U.S. patent 6567144B1 (2003).
19 H. Vithana, D. Johnson, P. Bos, R. Herke, Y. K. Fung and S. Jamal, "Nearly homeotropically aligned four-domain liquid crystal display with wide viewing angle," Jpn. J. Appl. Phys. 35, 2222-2227 (1996).   DOI
20 S.-C. A. Lien, C. Cai, R. W. Nunes, R. A. John, E. A. Galligan, E. Colgan, and J. S. Wilson, "Multi-domain homeotropic liquid crystal display based on ridge and fringe field structure," Jpn. J. Appl. Phys. 37, L597-L599 (1998).   DOI
21 H. Mori, Y. Itoh, Y. Nishiura, T. Nakamura, and Y. Shinagawa, "Performance of a novel optical compensation film based on negative birefringence of discotic compound for wide-viewing-angle twisted-nematic liquid-crystal displays," Jpn. J. Appl. Phys. 36, 143-147 (1997).   DOI
22 H. Mori, "Novel optical compensators of negative birefringence for wide-viewing-angle twisted-nematic liquid-crystal displays," Jpn. J. Appl. Phys. 36, 1068-1072 (1997).   DOI
23 P. Yeh, "Leakage of light in liquid crystal displays and birefringent thin film compensators," Opt. Rev. 16, 192-198 (2009).   DOI
24 S. Yang, H. Lee, and J.-H. Lee, "Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film," Opt. Eng. 55, 027106 (2016).   DOI
25 H.-J. Choi, K.-U. Jeong, and J.-H. Lee, "Optical anisotropy conversion of retarder film made of rodlike and crosslike reactive molecules, and its dependence on the relative ratio and the orientation of the constituent molecules," Opt. Mater. 99, 109531 (2020).   DOI
26 S. Yang and J.-H. Lee, "Optical simulation of viewing angle property of biaxial nematic bent-core liquid crystal," J. Opt. Soc. Korea 20, 510-514 (2016).   DOI