Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.6.583

940-nm 350-mW Transverse Single-mode Laser Diode with AlGaAs/InGaAs GRIN-SCH and Asymmetric Structure  

Kwak, Jeonggeun (Quantum Semiconductor International (QSI))
Park, Jongkeun (Quantum Semiconductor International (QSI))
Park, Jeonghyun (Quantum Semiconductor International (QSI))
Baek, Kijong (Quantum Semiconductor International (QSI))
Choi, Ansik (Quantum Semiconductor International (QSI))
Kim, Taekyung (Quantum Semiconductor International (QSI))
Publication Information
Current Optics and Photonics / v.3, no.6, 2019 , pp. 583-589 More about this Journal
Abstract
We report experimental results on 940-nm 350-mW AlGaAs/InGaAs transverse single-mode laser diodes (LDs) adopting graded-index separate confinement heterostructures (GRIN-SCH) and p,n-clad asymmetric structures, with improved temperature and small-divergence beam characteristics under high-output-power operation, for a three-dimensional (3D) motion-recognition sensor. The GRIN-SCH design provides good carrier confinement and prevents current leakage by adding a grading layer between cladding and waveguide layers. The asymmetric design, which differs in refractive-index distribution of p-n cladding layers, reduces the divergence angle at high-power operation and widens the transverse mode distribution to decrease the power density around emission facets. At an optical power of 350 mW under continuous-wave (CW) operation, Gaussian narrow far-field patterns (FFP) are measured with the full width at half maximum vertical divergence angle to be 18 degrees. A threshold current (Ith) of 65 mA, slope efficiency (SE) of 0.98 mW/mA, and operating current (Iop) of 400 mA are obtained at room temperature. Also, we could achieve catastrophic optical damage (COD) of 850 mW and long-term reliability of 60℃ with a TO-56 package.
Keywords
Laser diode; 940 nm laser diode; AlGaAs/InGaAs GRIN-SCH; Asymmetric structure; 3D motion recognition light source;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Miao, D. Yum, Z. L. Brand, and H. Dahlkamp, "Method and system for using light emission by a depth-sensing camera to capture video images under low-light conditions," U.S. Patent 10,009,554 (2018).
2 R. K. Price, M. Bleyer, and D. Demandolx, "Multi-spectrum illumination-and-sensor module for head tracking, gesture recognition and spatial mapping," U.S. Patent Appl. 15/447064 (2018).
3 OSRAM Marketing IR APAC, Wide IR Illumination & Sensing Products from OSRAM (Consumer Applications_Illumination & Sensing, April 2016), http://www.ledtaiwan. org/zh/sites/ledtaiwan.org/files/data16/images/%281%29IR%2BUV-S1-%20General%20Info%20Pack_Apr%272016.pdf (2018).
4 Lumentum Marketing IR, Diode Lasers in Next-Generation 3D Sensing Applications: Meeting the Challenges of Reliability and Scale (MARKETS_3D Sensing_ WHITE PAPER, 2018), https://resource.lumentum.com/s3fs-public/technical-library-items/diodelaser3d-wp-cl-ae.pdf (2018).
5 C. T. Hung and T. C. Lu, "830-nm AlGaAs-InGaAs graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics," IEEE J. Quantum Electron. 49, 127-132 (2013).   DOI
6 Y. Yamagata, Y. Yamada, M. Muto, S. Sato, R. Nogawa, A. Sakamoto, and M. Yamaguchi, "915 nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)," Proc. SPIE 9348, 93480F (2015).
7 A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, "High-power 808 nm lasers with a super-large optical cavity," Semicond. Sci. Technol. 20, 621 (2005).   DOI
8 A. Malag and B. Mroziewicz, "Vertical beam divergence of double-barrier multiquantum well (DBMQW) (AlGa)As heterostructure lasers," J. Lightwave Technol. 14, 1514-1518 (1996).   DOI
9 G. Lin, S.-T. Yen, C.-P. Lee, and D.-C. Liu, "Extremely small vertical far-field angle of InGaAs-AlGaAs quantumwell lasers with specially designed cladding structure," IEEE Photon. Technol. Lett. 8, 1588-1590 (1996).   DOI
10 T. Chan, S. H. Son, K. C. Kim, and T. G. Kim, "Design and simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH quantum dot laser diode," J. Opt. Soc. Korea 15, 124-127 (2011).   DOI
11 S. P. Abbasi and M. H. Mahdieh, "Asymmetric, nonbroadened waveguide structures for double QW high-power 808 nm diode laser," Proc. SPIE 10254, 1025406 (2017).
12 D. Heo, I. K. Han, J. I. Lee, and J. Jeong, "Study on InGaAsP-InGaAs MQW-LD with symmetric and asymmetric separate confinement heterostructure," IEEE Photon. Technol. Lett. 16, 1801-1803 (2004).   DOI
13 K. H. Schlereth and M. Tacke, "The complex propagation constant of multilayer waveguides: an algorithm for a personal computer," IEEE J. Quantum Electron. 26, 627-630 (1990).   DOI
14 I. K. Han, S. H. Cho, P. J. S. Heim, D. H. Woo, S. H. Kim, J. H. Song, F. G. Johnson, and M. Dagenais, "Dependence of the light-current characteristics of 1.55-${\mu}m$ broad-area lasers on different p-doping profiles," IEEE Photon. Technol. Lett. 12, 251-253 (2000).   DOI