Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.6.566

Investigation of Sensitivity Distribution in THz Metamaterials Using Surface Functionalization  

Cha, Sung Ho (Department of Physics and Department of Energy Systems Research, Ajou University)
Park, Sae June (Department of Physics and Department of Energy Systems Research, Ajou University)
Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University)
Publication Information
Current Optics and Photonics / v.3, no.6, 2019 , pp. 566-570 More about this Journal
Abstract
To investigate dependence of the sensitivity of THz metamaterials on the position of target dielectric materials, we functionalized the metamaterial gap with an adhesive polymer. A shift in resonance frequency occurs when polystyrene microbeads are deposited in the gap of the metamaterial's metal resonator pattern, while little change is observed when they are deposited on other areas of the metasurface. A two-dimensional mapping of the sensitivity, with a grid size of 1 ㎛, is obtained from a finite-difference time-domain simulation: The frequency shift is displayed as a function of the position of a target dielectric cube. The resulting sensitivity distribution clearly reveals the crucial role of the gap in sensing with metamaterials, which is consistent with the electric field distribution near the gap.
Keywords
Terahertz spectroscopy; Metamaterials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Berrier, P. Albella, M. Ameen Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. G. Rivas, "Detection of deepsubwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators," Opt. Express 20, 5052-5060 (2012).   DOI
2 T. Chen, S. Li, and H. Sun, "Metamaterials application in sensing," Sensors 12, 2742-2765 (2012).   DOI
3 R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).   DOI
4 I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007).   DOI
5 J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006).   DOI
6 N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).   DOI
7 J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations," Opt. Express 16, 1786-1795 (2008).   DOI
8 S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, "Detection of microorganisms using terahertz metamaterials," Sci. Rep. 4, 4988 (2014).
9 S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, "Sensing viruses using terahertz nano-gap metamaterials," Biomed. Opt. Express 8, 3551-3558 (2017).   DOI
10 H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).   DOI
11 J. Federici and L. Moeller, "Review of terahertz and subterahertz wireless communications," J. Appl. Phys. 107, 111101 (2010).   DOI
12 W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett. 37, 3366-3368 (2012).   DOI
13 T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).   DOI
14 J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, "Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices," J. Phys. Chem. Lett. 4, 3950-3957 (2013).   DOI
15 J. T. Hong, S. W. Jun, S. H. Cha, J. Y. Park, S. Lee, G. A. Shin, and Y. H. Ahn, "Enhanced sensitivity in THz plasmonic sensors with silver nanowires," Sci. Rep. 8, 15536 (2018).   DOI
16 S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Effective sensing volume of terahertz metamaterial with various gap widths," J. Opt. Soc. Korea 20, 628-632 (2016).   DOI
17 M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3, 152-156 (2009).   DOI
18 Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, "A multi-functional plasmonic biosensor," Opt. Express 18, 9561-9569 (2010).   DOI
19 P. Laurino, R. Kikkeri, N. Azzouz, and P. H. Seeberger, "Detection of bacteria using glyco-dendronized polylysine prepared by continuous flow photofunctionalization," Nano Lett. 11, 73-78 (2011).   DOI
20 K. Colville, N. Tompkins, A. D. Rutenberg, and M. H. Jericho, "Effects of poly (L-lysine) substrates on attached escherichia coli bacteria," Langmuir 26, 2639-2644 (2010).   DOI
21 S. J. Park, A. R. Kim, J. T. Hong, J. Y. Park, S. Lee, and Y. H. Ahn, "Crystallization kinetics of lead halide perovskite film monitored by in situ terahertz spectroscopy," J. Phys. Chem. Lett. 8, 401-406 (2017).   DOI
22 H. S. Kim, S. H. Cha, B. Roy, S. H. Kim, and Y. H. Ahn, "Humidity sensing using THz metamaterial with silk protein fibroin," Opt. Express 26, 33575-33581 (2018).   DOI
23 D. J. Park, J. T. Hong, J. K. Park, S. B. Choi, B. H. Son, F. Rotermund, S. Lee, K. J. Ahn, D. S. Kim, and Y. H. Ahn, "Resonant transmission of terahertz waves through metallic slot antennas on various dielectric substrates," Curr. Appl. Phys. 13, 753-757 (2013).   DOI
24 D. J. Park, S. J. Park, I. Park, and Y. H. Ahn, "Dielectric substrate effect on the metamaterial resonances in terahertz frequency range," Curr. Appl. Phys. 14, 570-574 (2014).   DOI
25 G. Zhao, M. T. Mors, T. Wenckebach, and P. C. M. Planken, "Terahertz dielectric properties of polystyrene foam," J. Opt. Soc. Am. B 19, 1476-1479 (2002).   DOI
26 S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC Adv. 6, 69381-69386 (2016).   DOI
27 J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech. 53, 1451-1461 (2005).   DOI
28 S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, "Sensitive detection of yeast using terahertz slot antennas," Opt. Express 22, 30467-30472 (2014).   DOI