Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.2.172

Optical Properties of a Proton-implanted Nd:CNGG Planar Waveguide  

Zhu, Qian-Lin (College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications)
Lin, Ming-Fu (College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications)
Chen, Jing-Yi (College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications)
Wang, Zhong-Yue (College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications)
Liu, Chun-Xiao (College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications)
Publication Information
Current Optics and Photonics / v.3, no.2, 2019 , pp. 172-176 More about this Journal
Abstract
The work reports on the fabrication of an optical planar waveguide in the Nd:CNGG crystal by the 0.4-MeV hydrogen ion implantation with a fluence of $8.0{\times}10^{16}ions/cm^2$. The nuclear energy loss of the implanted hydrogen ions was derived by using SRIM 2013 code. The microscope image of the proton-implanted Nd:CNGG crystal cross section was captured by a metallographic microscope. The transmittance spectra were recorded before and after the ion implantation. The light intensity distribution of the planar waveguide at 632.8 nm was experimentally measured to validate its effect on one dimension confinement. The investigation shows that the proton-implanted Nd:CNGG waveguide is a candidate for an optoelectronic integrated device.
Keywords
Ion implantation; Nd:CNGG crystal; Waveguide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Banyasz, Z. Zolnai, M. Fried, S. Berneschi, S. Pelli, and G. Nunzi-Conti, "Leaky mode suppression in planar optical waveguides written in $Er:TeO_2-WO_3$ glass and $CaF_2$ crystal via double energy implantation with MeV $N^+$ ions," Nucl. Instrum. Methods Phys. Res., Sect. B 326, 81-85 (2014).   DOI
2 G. S. Seo and T. J. Ahn, "Protection method for diameter downsized fiber Bragg gratings for highly sensitive ultraviolet light sensors," Curr. Opt. Photon. 2, 221-225 (2018).   DOI
3 M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, "Monolithic ultra-high-Q lithium niobate microring resonator," Optica 4, 1536-1537 (2017).   DOI
4 Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, "Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals Heterostructure via ion irradiation: optical evidences and photonic applications," ACS Photonics 4, 1531-1538 (2017).   DOI
5 J. D. B. Bradley and M. Pollnau, "Erbium-doped integrated waveguide amplifiers and lasers," Laser Photon. Rev. 5, 368-403 (2011).   DOI
6 X. H. Li, X. M. Liu, D. Mao, X. H. Hu, and H. Lu, "Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique," Opt. Eng. 49, 094301-094304 (2010).   DOI
7 Y. Wang, X. L. Shen, R. L. Zheng, P. Lv, C. X. Liu, and H. T. Guo, "Optical planar waveguides fabricated by using carbon ion implantation in terbium gallium garnet," J. Korean Phys. Soc. 72, 765-769 (2018).   DOI
8 Y. Tan, L. N. Ma, S. Akhmadaliev, S. Q. Zhou, and F. Chen, "Ion irradiated Er:YAG ceramic cladding waveguide amplifier in C and L bands," Opt. Mater. Express 6, 711-716 (2016).   DOI
9 H. Hu, R. Ricken, and W. Sohler, "Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium," Appl. Phys. B 98, 677-679 (2010).   DOI
10 X. L. Shen, Q. F. Zhu, R. L. Zheng, P. Lv, H. T. Guo, and C. X. Liu, "Near-infrared optical properties of $Yb^{3+}$-doped silicate glass waveguides prepared by double-energy proton implantation," Results Phys. 8, 352-356 (2018).   DOI
11 A. Tervonen, B. R. West, and S. Honkanen, "Ion-exchanged glass waveguide technology: a review," Opt. Eng. 50, 071107 (2011).   DOI
12 L. N. Ma, Y. Tan, M. Ghorbani-Asl, R. Boettger, S. Kretschmer, S. Zhou, Z. Huang, A. V. Krasheninnikov, and F. Chen, "Tailoring the optical properties of atomically-thin $WS_2$ via ion irradiation," Nanoscale 9, 11027-11034 (2017).   DOI
13 F. Meriche, T. Touam, A. Chelouche, M. Dehimi, J. Solard, A. Fischer, A. Boudrioua, and L. H. Peng, "Post-annealing effects on the physical and optical waveguiding properties of RF sputtered ZnO thin films," Electron. Mater. Lett. 11, 862-870 (2015).   DOI
14 F. Chen, "Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications," Laser Photon. Rev. 6, 622-640 (2012).   DOI
15 H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, "High-power dual-wavelength laser with disordered Nd:CNGG crystals," Opt. Lett. 34, 151-153 (2009).   DOI
16 G. V. Vazquez, R. Valiente, S. Gomez-Salces, E. Flores-Romero, J. Rickards, and R. Trejo-Luna, "Carbon implanted waveguides in soda lime glass doped with $Yb^{3+}$ and $Er^{3+}$ for visible light emission," Opt. Laser Technol. 79, 132-136 (2016).   DOI
17 D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).   DOI
18 C. X. Liu, L. L. Fu, L. L. Cheng, X. F. Zhu, S. B. Lin, R. L. Zheng, Z. G. Zhou, H. T. Guo, W. N. Li, and W. Wei, "Optimization effect of annealing treatment on oxygenimplanted Nd:CNGG waveguides," Mod. Phys. Lett. B 30, 1650261 (2016).   DOI
19 P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, "1.6 W of $TEM_{00}$ cw output at 1.06 ${\mu}m$ from Nd:CNGG laser end-pumped by a fiber coupled diode laser array," Opt. Laser Technol. 35, 173-180 (2003).   DOI
20 Y. Tan, F. Chen, G. V. Vazquez, H. H. Yu, and H. J. Zhang, "Quasi-three-level laser emissions of neodymiumdoped disordered crystal waveguides," IEEE J. Quantum Electron. 21, 1601905 (2015).
21 R. Ramponi, R. Osellame, and M. Marangoni, "Two straightforward methods for the measurement of optical losses in planar waveguides," Rev. Sci. Instrum. 73, 1117-1121 (2002).   DOI
22 C. X. Liu, M. Chen, L. L. Fu, R. L. Zheng, H. T. Guo, Z. G. Zhou, W. N. Li, S. B. Lin, and W. Wei, "Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation," Chin. Phys. B 25, 044211 (2016).   DOI
23 J. F. Ziegler, SRIM - The stopping and range of ions in matter, http://www.srim.org.
24 B. X. Xiang and L. Wang, "Near-infrared waveguide in gallium nitride single crystal produced by carbon ion implantation," Jpn. J. Appl. Phys. 56, 050306 (2017).   DOI
25 L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, "Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of $MgO:LiNbO_3$ crystals," Opt. Express 23, 30188-30194 (2015).   DOI