Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.2.143

Shape Ellipticity Dependence of Exciton Fine Levels and Optical Nonlinearities in CdSe and CdTe Nanocrystal Quantum Dots  

Yang, Hanyi (Department of Physics Education, Pusan National University)
Kyhm, Kwangseuk (Department of Physics Education, Pusan National University)
Publication Information
Current Optics and Photonics / v.3, no.2, 2019 , pp. 143-149 More about this Journal
Abstract
Shape ellipticity dependence of the exciton fine energy levels in CdTe and CdSe nanocrystal quantum dots were compared theoretically by considering the crystal structure and the Coulomb interaction of an electron and a hole. While quantum dot ellipticity changes from an oblate to prolate quantum dot via spherical shape, both the fine energy levels and the dipole moment in wurtzite structure of a CdSe quantum dot change linearly for ellipticity. In contrast, CdTe quantum dots were found to show a level crossing between the bright and dark exciton states with a significant change of the dipole moment due to the cubic structure. Shape ellipticity dependence of the optical nonlinearities in CdTe and CdSe nanocrystal quantum dots was also calculated by using semiconductor Bloch equations. For a spherical shape quantum dot, only $1^L$ dominates the optical nonlinearities in a CdSe quantum dot, but both $1^U$ and $0^U$ contribute in a CdTe quantum dot. As excitation pulse area becomes strong (${\sim}{\pi}$), the optical nonlinearities of both CdSe and CdTe quantum dots are mainly governed by absorption saturation. However, in the case of a prolate CdTe quantum dot, the real part of the nonlinear refractive index becomes relatively significant.
Keywords
Quantum dots; Excitons; Shape ellipticity; Nonlinearity refractive index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Lyer, and S. Weiss, "Advances in fluorescence imaging with quantum dot bio-probes," Biomaterials 27, 1679-1687 (2006).   DOI
2 A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and Al. L. Efros, "Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions," J. Opt. Soc. Am. B 10, 100-107 (1993).   DOI
3 B. De Geyter and Z. Hens, "The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots," Appl. Phys. Lett. 97, 161908 (2010).   DOI
4 A. Gaur, B. D. Shrivastava, and H. L. Nigam, "X-Ray absorption fine structure (XAFS) spectroscopy - A review," Proc. Indian. Natn. Sci. Acad. 79, 921-966 (2013).
5 H. Ping, "Effect of dielectric constant on the exciton ground state energy of CdSe quantum dots," Chin. Phys. 9, 844-847 (2000).   DOI
6 S. W. Koch, N. Peyghambarian, and M. Lindberg, "Transient and steady-state optical nonlinearities in semiconductors," J. Phys. C: Solid State Phys. 21, 5229-5249 (1988).   DOI
7 Al. L. Efros, "Luminescence polarization of CdSe microcrystals," Phys. Rev. B 46, 7448-7458 (1991).   DOI
8 Z.-W. Wang, W.-P. Li, J.-W. Yin, and J.-L. Xiao, "Properties of parabolic linear bound potential and coulomb bound potential quantum dot qubit," Commun. Theor. Phys. 49, 311-314 (2008).   DOI
9 Al. L. Efros and A. V. Rodina, "Band-edge absorption and luminescence of nonspherical nanometer-size crystals," Phys. Rev. B 47, 10005-10007 (1996).
10 Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, "Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states," Phys. Rev. B. 54, 4843-4856 (1996).   DOI
11 E. O. Kane, "Band structure of indium antimonide," J. Phys. Chem. Solids 1, 249-261 (1957).   DOI
12 C. R. Pidgeon and R. N. Brown, "Interband magnetoabsorption and faraday rotation in InSb," Phys. Rev. 146, 575-583 (1966).   DOI
13 M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, Al. L. Efros, and M. Rosen, "Observation of the "Dark exciton" in CdSe quantum dots," Phys. Rev. Lett. 75, 3728-3731 (1995).   DOI
14 A. Rubio-Ponce, D. Olguin, and I. Hernandez-Calderon, "Calculation of the effective masses of 2-6 semiconductor compounds," Superficies Vacio 16, 26-28 (2003).
15 G. Fonthal, L. Tirado-Mejia, J. I. Marin-Hurtado, H. Ariza-Calderon, and J. G. Mendoza-Alvarez, "Temperature dependence of the band gap energy of crystalline CdTe," J. Phys. Chem. Solids 61, 579-583 (2000).   DOI
16 M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. A 45, 1865-1875 (1992).   DOI
17 V. I. Klimov, Nanocrystal quantum dots (CRC Press, 2010).
18 D. J. Norris and M. G. Bawendi, "Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots," Phys. Rev. B. 53, 16338-16346 (1995).   DOI
19 H. Haug and S. W. Koch, Quantum theory of the optical and electronic properties of semiconductors (World Scientific, 1990).
20 N. Van Trong and G. Mahler, "Field-dependent screening and dephasing in semiconductor Bloch equations," Phys. Rev. B 54, 1766-1774 (1996).   DOI
21 K.-C. Je, I.-C. Shin, J. Kim, and K. Kyhm, "Optical nonlinearities of fine exciton states in a CdSe quantum dot," Appl. Phys. Lett. 97, 103110 (2010).   DOI
22 A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, "Quantum size effect in semiconductor microcrystals," Solid State Commun. 56, 921-924 (1985).   DOI