Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.2.128

Support-area Dependence of Vibration-insensitive Optical Cavities  

Lee, Won-Kyu (Korea Research Institute of Standards and Science)
Park, Sang Eon (Korea Research Institute of Standards and Science)
Park, Chang Yong (Korea Research Institute of Standards and Science)
Yu, Dai-Hyuk (Korea Research Institute of Standards and Science)
Heo, Myoung-Sun (Korea Research Institute of Standards and Science)
Kim, Huidong (Korea Research Institute of Standards and Science)
Publication Information
Current Optics and Photonics / v.3, no.2, 2019 , pp. 128-134 More about this Journal
Abstract
The vibration sensitivities of optical cavities depending on the support area were investigated, both numerically and experimentally. We performed numerical simulations with two models: one with total constraint of the support area, and the other with only vertical constraint. An optimal support condition insensitive to the support's area could be found by numerical simulation. The support area was determined in the experiment by a Viton rubber pad. The vertical, transverse, and longitudinal vibration sensitivities were measured experimentally. The experimental result agreed with the numerical simulation of a sliding model (only vertical constraint).
Keywords
Vibration sensitivity; Optical cavity; Support area; Viton pad;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
2 S. Lee, C. Y. Park, W.-K. Lee, and D.-H. Yu, "Cancellation of collisional frequency shifts in optical lattice clocks with Rabi spectroscopy," New J. Phys. 18, 033030 (2016).   DOI
3 S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, "A Fermidegenerate three-dimensional optical lattice clock," Science 358, 90-94 (2017).   DOI
4 M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, "Ultrastable optical clock with two cold-atom ensembles," Nat. Photon. 11, 48-52 (2017).   DOI
5 N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, "Frequency ratio of Yb and Sr clocks with 5 ${\times}10^{-17}$ uncertainty at 150 seconds averaging time," Nat. Photon. 10, 258-261 (2016).   DOI
6 H. Kim, M.-S. Heo, W.-K. Lee, C. Y. Park, H.-G. Hong, S.-W. Hwang, and D.-H. Yu, "Improved absolute frequency measurement of the $^{171}Yb$ optical lattice clock at KRISS relative to the SI second," Jpn. J. Appl. Phys. 56, 050302 (2017).   DOI
7 A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, "Femtosecondlaser-based synthesis of ultrastable microwave signals from optical frequency references," Opt. Lett. 60, 667-669 (2005).
8 E. Wiens, A. Yu. Nevsky, and S. Schiller, "Resonator with ultrahigh length stability as a probe for equivalence-principleviolating physics," Phys. Rev. Lett. 117, 271102 (2016).   DOI
9 S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, "Gravitational wave detection with optical lattice atomic clocks," Phys. Rev. D 94, 124043 (2016).   DOI
10 Y. V. Stadnik and V. V. Flambaum, "Enhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detection," Phys. Rev. A 93, 063630 (2016).   DOI
11 A. A. Geraci, C. Bradley, D. Gao, J. Weinstein, and A. Derevianko, "Searching for ultra-light dark matter with optical cavities," arXiv1808.00540 (2018).
12 T. Nazarova, F. Riehle, and U. Sterr, "Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser," Appl. Phys. B 83, 531-536 (2006).   DOI
13 J. Millo, D. V. Magalhaes, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, "Ultrastable lasers based on vibration insensitive cavities," Phys. Rev. A 79, 053829 (2009).   DOI
14 S. A. Webster, M. Oxborrow, and P. Gill, "Vibration insensitive optical cavity," Phys. Rev. A 75, 011801(R) (2007).   DOI
15 S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, "Thermal-noise-limited optical cavity," Phys. Rev. A 77, 033847 (2008).   DOI
16 Y. N. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. Wang, "A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability," Opt. Express 17, 8970-8982 (2009).   DOI
17 S. Amairi, T. Legero, T. Kessler, U. Sterr, J. B. Wubbena, O. Mandel, and P. O. Schmidt, "Reducing the effect of thermal noise in optical cavities," Appl. Phys. B 113, 233-242 (2013).   DOI
18 J. Keller, S. Ignatovich, S. A. Webster, and T. E. Mehlstaubler, "Simple vibration-insensitive cavity for laser stabilization at the $10^{-16}$ level," Appl. Phys. B 116, 203-210 (2014).   DOI
19 T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, "Comparison of two independent Sr optical clocks with $1\;{\times}\;10^{-17}$ stability at $10^{3}$ s," Phys. Rev. Lett. 109, 230801 (2012).   DOI
20 Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, "Making optical atomic clocks more stable with $10^{-16}$-level laser stabilization," Nat. Photon. 5, 158-161 (2011).   DOI
21 G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, "Tenfold reduction of Brownian noise in highreflectivity optical coatings," Nat. Photon. 7, 644-650 (2013).   DOI
22 S. Hafner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, "$8\;{\times}\;10^{-17}$ fractional laser frequency instability with a long room-temperature cavity," Opt. Lett. 40, 2112-2115 (2015).   DOI
23 T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, "A sub-40-mHzlinewidth laser based on a silicon single-crystal optical cavity," Nat. Photon. 6, 687-692 (2012).   DOI
24 D. G. Matei, T. Legero, S. Hafner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, "1.5 ${\mu}m$ lasers with sub-10 mHz linewidth," Phys. Rev. Lett. 118, 263202 (2017).   DOI
25 M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, "Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity," Opt. Lett. 30, 1815-1817 (2005).   DOI
26 E. B. Kim, W.-K. Lee, C. Y. Park, D.-H. Yu, and S. E. Park, "Narrow linewidth 578 nm light generation using frequencydoubling with a waveguide PPLN pumped by an optical injection-locked diode laser," Opt. Express 18, 10308-10314 (2010).   DOI
27 A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, "Compact, thermal-noise-limited optical cavity for diode laser stabilization at $1 \;{\times}\;10^{-15}$," Opt. Lett. 32, 641 (2007).   DOI
28 C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. Lee, "Absolute frequency measurement of $^{1}S_0$ (F = 1/2) -$^{3}P_0$ (F = 1/2) transition of $^{171}Yb$ atoms in a one-dimensional optical lattice at KRISS," Metrologia 50, 119-128 (2013).   DOI
29 D.-H. Yu, C. Y. Park, W.-K. Lee, S. Lee, S. E. Park, J. Mun, S.-B. Lee, and T. Y. Kwon, "An Yb optical lattice clock: current status at KRISS," J. Korean Phys. Soc. 63, 883-889 (2013).   DOI
30 https://www.corning.com/worldwide/en/products/advanced-optics/product-materials/semiconductor-laser-optic-components/ultra-low-expansion-glass.html.
31 W.-K. Lee, C. Y. Park, D.-H. Yu, S. E. Park, S.-B. Lee, and T. Y. Kwon, "Generation of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laser," Opt. Express 19, 17453-17461 (2011).   DOI