Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.1.040

Tuning Photoluminescence of Biological Light Emitters via Silk Protein Based Resonators  

Arif, Sara (Department of Energy Systems Research, Ajou University)
Umar, Muhammad (Department of Energy Systems Research, Ajou University)
Kim, Sunghwan (Department of Energy Systems Research, Ajou University)
Publication Information
Current Optics and Photonics / v.3, no.1, 2019 , pp. 40-45 More about this Journal
Abstract
Adding tunability to biological light emitters offers an unprecedented technique in biological sensing and imaging. Here, we report a tunable, lithographic-free, planar, and ultrathin metal-insulator-metal (MIM) resonator capable of tuning the optical properties solely by a silk/sodium fluorescein hydrogel layer, a biocompatible light emitter. In water, the volume of the resonator was expanded by swelling, and then the resonant mode could be shifted. Simulations predicted the red-shifted resonance peak in transmission when the MIM was swollen in water. The red-shift could be attributed to the increase in the thickness of the silk hydrogel layer due to the absorbed water. The shift of the resonance could affect the fluorescence of the dye in the silk hydrogel layer.
Keywords
Silk protein; Tunable luminescence; Metal-insulator-metal resonator; Hydrogel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. V. Deun, P. Nockemann, C. G. Walrand, and K. Binnemans, "Strong erbium luminescence in the near-infrared telecommunication window," Chem. Phys. Lett. 397, 447-450 (2004).   DOI
2 T. Otto, S. Kurth, S. Voigt, A. Morschhauser, M. Meinig, K. Hiller, M. Moebius, and M. Vogel1, "Integrated microsystems for smart applications," Sens. Mater. 30, 767-778 (2018).
3 X. Jin, L. Dong, X. Di, H. Huang, J. Liu, X. Sun, X. Zhang, and H. Zhu, "NIR luminescece for the detection of latent fingerprints based on ESIPT and AIE processes" RSC Adv. 5, 87306-87310 (2015).   DOI
4 Y. Moritake, Y. Kanamori, and K. Hane, "Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with fano resonance," Sci. Rep. 6, 33208 (2016).   DOI
5 F. Wang, D. Liu, Z. Chen, Z. Duan, Y. Zhang, D. Sun, X. Zhao, W. Shi, R. Zheng, and H. Luo, "In situ reversible tuning of photoluminescence of an epitaxial thin film via piezoelectric strain induced by a $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ single crystal," J. Mater. Chem. C 5, 9115-9120 (2017).   DOI
6 E. Rajo-Iglesias, O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag. 56, 1648-1655 (2008).   DOI
7 G. T. Papadakis, D. Fleischman, A. Davoyan, P. Yeh, and H. A. Atwater, "Optical magnetism in planar metamaterial heterostructures," Nat. Commun. 9, 296 (2018).   DOI
8 H. Wohltjen and A. W. Snow, "Colloidal metal-Insulatormetal ensemble chemiresistor sensor," Anal. Chem. 70, 2856-2859 (1998).   DOI
9 H. Kwon and S. Kim, "Chemically tunable, biocompatible, and cost-effective metal-insulator-metal resonators using silk protein and ultrathin silver films," ACS Photon. 2, 1675-1680 (2015).   DOI
10 M. Umar, K. Min, M. Jo, and S. Kim, "Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel," Opt. Mater. 80, 241-246 (2018).   DOI
11 D. M. Zhigunov, A. B. Evlyukhin, A. S. Shalin, U. Zywietz, and B. N. Chichkov, "Femtosecond laser printing of single Ge and SiGe nanoparticles with electric and magnetic optical resonances," ACS Photon. 5, 977-983 (2018).   DOI
12 A. D. Mayevsky and A. M. Funston, "Control of electric field localization by three-dimensional bowtie nanoantennae," Phys. Chem. C 122, 18012-18020 (2018).   DOI
13 S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, "Direct electrospray printing of gradient refractive index chalcogenide glass films," ACS Appl. Mater. Inter. 9, 26990-26995 (2017).   DOI
14 E. Marsell, E. Boström, A. Harth, A. Losquin, C. Guo, Y.-C. Cheng, E. Lorek, S. Lehmann, G. Nylund, M. Stankovski, C. L. Arnold, M. Miranda, K. A. Dick, J. Mauritsson, C. Verdozzi, A. L'Huillier, and A. Mikkelsen, "Spatial control of multiphoton electron excitations in InAs nanowires by varying crystal phase and light polarization," Nano Lett. 18, 907-915 (2018).   DOI
15 Z. Li, S. Butun, and K. Aydin, "Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films," ACS Photon. 2, 183-188 (2015).   DOI
16 K. T. Lee, S. Seo, and L. J. Guo, "High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers," Adv. Opt. Mater. 3, 347-352 (2015).   DOI
17 M. Yan, "Metal-insulator-metal light absorber: a continuous structure," J. Opt. 15, 025006 (2013).   DOI
18 H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, "Omnidirectional resonance in a metal-dielectric-metal geometry," Appl. Phys. Lett. 84, 4421-423 (2004).   DOI
19 F. G. Omenetto and D. L. Kaplan, "A new route for silk," Nat. Photon. 2, 641-643 (2008).   DOI
20 F. G. Omenetto and D. L. Kaplan, "New opportunities for an ancient material," Science 329, 528-531 (2010).   DOI
21 K. Min, M. Umar, S. Roy, S. Lee, and S. Kim, "Silk protein as a new optically transparent adhesive layer for an ultra-smooth sub-10 nm gold layer," Nanotechnology 28, 115201 (2017).   DOI
22 S. Kim, A. N. Mitropoupls, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, "Silk inverse opals," Nat. Photon. 6, 818-823 (2012).   DOI
23 K. Min, S. Kim, and S. Kim, "Deformable and conformal silk hydrogel inverse opal," Proc. Natl. Acad. Sci. 114, 6185 (2017).   DOI
24 S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, "Biocompatible silk printed optical waveguides," Adv. Mater. 21, 2411-2415 (2009).   DOI
25 V. Prajzler, K. Min, S. Kim, and P. Nekvindova, "The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum," Materials 11, 112 (2018).   DOI
26 H. Jung, K. Min, H. Jeon, and S. Kim, "Physically transient distributed feedback laser using optically activated silk bio-ink," Adv. Opt. Mater. 4, 1738-1743 (2016).   DOI
27 Y. Choi, H. Jeon, and S. Kim, "A fully biocompatible single-mode distributed feedback laser," Lab Chip 15, 642-645 (2015).   DOI
28 M. Lee, H. Jeon, and S. Kim, "A highly tunable and fully biocompatible silk nanoplasmonic optical sensor," Nano Lett. 15, 3358-3363 (2015).   DOI
29 E. Palik, Handbook of Optical Constants of Solids: Index (Elsevier, New York, 1998), Vol. 3.
30 X. Hu, D. Kaplan, and P. Cebe, "Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy," Macromolecules 39, 6161-6170 (2006).   DOI
31 J. Stone and L. Stulz, "Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium and small free spectral ranges," Electron. Lett. 23, 781-783 (1987).   DOI
32 A. Frenkel and C. Lin, "Angle-tuned etalon filters for optical channel selection in high density wavelength division multiplexed systems," J. Lightw. Technol. 7, 615-624 (1989).   DOI