Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.1.033

Development of a Mid-infrared CW Optical Parametric Oscillator Based on Fan-out Grating MgO:PPLN Pumped at 1064 nm  

Bae, In-Ho (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Lim, Sun Do (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Yoo, Jae-Keun (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Lee, Dong-Hoon (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Kim, Seung Kwan (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Publication Information
Current Optics and Photonics / v.3, no.1, 2019 , pp. 33-39 More about this Journal
Abstract
We report development of a frequency-stabilized mid-infrared continuous-wave (cw) optical parametric oscillator (OPO) based on a fan-out grating MgO:PPLN crystal pumped at 1064 nm. The OPO resonator was designed as a pump-enhanced standing-wave cavity that resonates to the pump and signal beams. To realize stable operation of the OPO, we applied a modified Pound-Drever-Hall technique, which is a well-known method for powerful laser frequency stabilization. Tuning a poling period of the fan-out grating of the crystal allows wavelength-tunable OPO outputs from 1510 nm to 1852 nm and from 2500 nm to 3600 nm for signal and idler beams, respectively. At the idler wavelengths of 2500 nm, 3000 nm and 3500 nm, we achieved more than 50 mW of output powers at a pumping power of 1.1 W. The long-term stability of the OPO was confirmed by recording the power and wavelength variations of the idler for an hour.
Keywords
Optical parametric oscillator; Mid-infrared laser; Laser power stabilization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. R. Bosenberg, L. K. Cheng, and C. L Tang, "Ultraviolet optical parametric oscillation in ${\beta}$-BaB_2O_4$," Appl. Phys. Lett. 54, 13-15 (1989).   DOI
2 A. Garashi, A. Arie, A. Skliar, and G. Rosenman, "Continuous-wave optical parametric oscillator based on periodically poled $KTiOPO_4$," Opt. Lett. 23, 1739-1741 (1998).   DOI
3 I.-H. Bae, H. S. Moon, S. Zaske, C. Becher, S. K. Kim, S.-N. Park, and D.-H. Lee, "Low-threshold singly-resonant continuous-wave optical parametric oscillator based on MgO-doped PPLN," Appl. Phys. B 103, 311-319 (2011).   DOI
4 J. Feve, O. Pacaud, B. Boulanger, B. Menaert, J. Hellstrom, V. Pasiskevicius, and F. Laurell, "Widely and continuously tunable optical parametric oscillator based on a cylindrical periodically poled $KTiOPO_4$ crystal," Opt. Lett. 26, 1882-1884 (2001).   DOI
5 A. Carleton, D. J. M. Stothard, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, "Compact, continuouswave, singly resonant optical parametric oscillator based on periodically poled $RbTiOAsO_4$ in a Nd:$YVO_4$ laser," Opt. Lett. 28, 555-557 (2003).   DOI
6 W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "Continuous-wave singly resonant optical parametric oscillator based on periodically poled $LiNbO_3$," Opt. Lett. 21, 713-715 (1996).   DOI
7 V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, "Medical applications of mid-IR lasers. Problems and prospects," J. Opt. Technol. 77, 6-17 (2010).   DOI
8 M. W. Sigrist, "Mid-infrared laser-spectroscopic sensing of chemical species," J. Adv. Res. 6, 529-533 (2015).   DOI
9 S. Yu, D. Li, H. Chong, C. Sun, and K. Xu, "Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy," Opt. Laser Eng. 55, 78-83 (2014).   DOI
10 J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D. W. Piston, K. Joos, and M. S. Hutson, "Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-${\mu}m$ wavelength range," Biomed. Opt. Express 2, 1275-1281 (2011).   DOI
11 K. K. Choi, J. N. Mait, J. M. Pellegrino, and G. L. Wood, "Optics research at the U.S. Army Research Laboratory," Appl. Opt. 56, B103-B115 (2017).   DOI
12 D. Ouzounov and F. Freund, "Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data," Adv. Space Res. 33, 268-273 (2004).   DOI
13 J.-P. Williams, D. A. Paige, B. T. Greenhagen, and E. Sefton-Nash, "The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment," Icarus 283, 300-325 (2017).   DOI
14 A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, "Application of quantum cascade lasers to trace gas analysis," Appl. Phys. B 90, 165-176 (2008).   DOI
15 D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, "Low-pump-threshold continuous-wave singly resonant optical parametric oscillator," Opt. Lett. 23, 1895-1897 (1998).   DOI
16 F. K. Tittel, D. Richter, and A. Fried, "Mid-infrared laser applications in spectroscopy," Appl. Phys. 89, 458-529 (2003).   DOI
17 B. M. Walsh, H. R. Lee, and N. P. Barnes, "Mid infrared lasers for remote sensing applications," J. Lumin. 169, 400-405 (2016).   DOI
18 J. Hodgkinson and R. P. Tatam, "Optical gas sensing," Meas. Sci. Technol. 24, 012004 (2013).   DOI
19 A. Gerace and M. Montanaro, "Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat-8," Remote Sens. Environ. 191, 246-257 (2017).   DOI
20 M. Montanaro, A. Gerace, and S. Rohrbach, "Toward an operational stray light correction for the Landsat 8 thermal infrared sensor," Appl. Opt. 54, 3963-3978 (2015).   DOI
21 G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, "Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator," Opt. Lett. 25, 341-343 (2000).   DOI
22 I. D. Lindsay, D. J. M. Stothard, C. F. Rae and M. H. Dunn "Continuous-wave, pump-enhanced optical parametric oscillator based on periodically-poled $RbTiOAsO_4$," Opt. Express 11, 134-140 (2003).   DOI
23 P. E. Powers, Thomas J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998).   DOI
24 K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, "Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled $LiNbO_3$," Opt. Lett. 22, 1293-1295 (1997).   DOI
25 I.-H. Bae, H.-S. Moon, S.-K. Kim, S.-N. Park, and D.-H. Lee, "Self-guided operation of singly resonant continuouswave optical parametric oscillator based on bulk MgO-doped PPLN," Appl. Phys. B 106, 797-801 (2012).   DOI
26 R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, New York, 2003), Chapter. 3
27 I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahim-Zadeh, "Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser," Appl. Phys. Lett. 78, 871-873 (2001).   DOI
28 K. Devi and M. Ebrahim-Zadeh, "Room-temperature, rapidly tunable, green-pumped continuous-wave optical parametric oscillator," Opt. Lett. 42, 2635-2638 (2017).   DOI
29 A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, "Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection," Appl. Phys. B 85, 173-180 (2006).   DOI
30 I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, "Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser," Appl. Phys. Lett. 78, 871-873 (2001).   DOI