Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.6.606

Estimation of the Ratio of Nonlinear Optical Tensor Components by Measuring Second Harmonic Generation and Parametric Down Conversion Outputs in a Single Periodically Poled LiNbO3 Crystal  

Kumar, CH. S.S. Pavan (Department of Physics, Pusan National University)
Kim, Jiung (Department of Physics, Pusan National University)
Kim, Byoung Joo (Department of Physics, Pusan National University)
Cha, Myoungsik (Department of Physics, Pusan National University)
Publication Information
Current Optics and Photonics / v.2, no.6, 2018 , pp. 606-611 More about this Journal
Abstract
Measurement of the nonlinear optical coefficients is not an easy task since it requires complicated experimental setup and analysis. We suggest an easy way to estimate the relative nonlinear optical tensor components by direct measurement of the output powers of the second harmonic generation and spontaneous parametric down conversion experiments. The experiments were done in quasi-phase-matched type-0 as well as type-1 interactions at similar pump wavelengths in a 5% MgO-doped periodically poled $LiNbO_3$ crystal to obtain the ratio of the nonlinear optical tensor components $d_{33}/d_{31}$ in each experiment. The obtained ratios were then compared with the previously ascertained values [J. Opt. Soc. Am. B, 14, 2268-2294 (1997)].
Keywords
Harmonic generation; Quasi-phase-matching; Nonlinear optical coefficients;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Umemura, D. Matsuda, T. Mizuno, and K. Kato, "Sellmeier and thermo-optic dispersion formulas for the extraordinary ray of 5 mol% MgO-doped congruent $LiNbO_3$ in the visible, infrared, and terahertz regions," Appl. Opt. 53, 5726-5732 (2014).   DOI
2 P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of optical harmonics," Phys. Rev. Lett. 7, 118-120 (1961).   DOI
3 J. R. Schewesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, "Pyro-electrically induced photorefractive damage in magnesium-doped lithium niobate crystals," J. Opt. Soc. Am. B. 28, 1973-1987 (2011).   DOI
4 H.-H. Lim, O. Prakash, B.-J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, "Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate," Opt. Express 15, 18294-18299 (2007).   DOI
5 Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, "Compact integrated green laser module for Watt-level display applications," IEEE Photon. Technol. Lett. 25, 75-77 (2013).   DOI
6 A. Barh, P. T. Lichtenberg, and C. Pederson, "Thermal noise in mid-infrared broadband upconversion detectors," Opt. Express 26, 3249-3259 (2018).   DOI
7 D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).   DOI
8 D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Watt-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm," Opt. Express 13, 6772-6776 (2005).   DOI
9 H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3W green-light generation in bulk periodically poled MgO:$LiNbO_3$," Jpn. J. Appl. Phys. 45, 6704-6707 (2006).   DOI
10 R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, "Absolute and relative nonlinear optical coefficients of KDP, KD*P, $BaB_2O_4$, $LiIO_3$, MgO:$LiNbO_3$, and KTP measured by phase-matched second-harmonic generation," IEEE J. Quantum Electron. 26, 922-933 (1990).   DOI
11 I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997).   DOI
12 R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, "Dependence of second-harmonic-generation coefficients of $LiNbO_3$ on melt composition," J. Appl. Phys. 42, 4145-4147 (1971).   DOI
13 O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric $LiNbO_3$," Appl. Phys. B, 91, 343-348 (2008).   DOI
14 M. M. Choy and R. L. Byer, "Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals," Phys. Rev. B 14, 1693-1706 (1976).   DOI
15 H. Vanherzeele and J. D. Bierlein, "Magnitude of the nonlinear-optical coefficients of $KTiOPO_4$," Opt. Lett. 17, 982-984 (1992).   DOI
16 E. C. Cheung, K. Koch, G. T. Moore, and J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19, 168-170 (1994).   DOI
17 V. G. Dmitreiv, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
18 N. Umemura and D. Matsuda, "Thermo-optic dispersion formula for the ordinary wave in 5 mol% MgO doped $LiNbO_3$ and its application to temperature insensitive secondharmonic generation," Opt. Commun. 367, 167-173 (2016).   DOI
19 M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).   DOI