Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.6.589

Two-dimensional Nature of Center-of-mass Excitons Confined in a Single CdMnTe/CdTe/CdMnTe Heterostructure  

Lee, Woojin (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University)
Kim, Minwoo (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University)
Yang, Hanyi (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University)
Kyhm, Kwangseuk (Department of Cogno-Mechatronics Engineering, Physics Education, Pusan National University)
Murayama, Akihiro (Graduate School of Information Science and Technology, Hokkaido University)
Kheng, Kuntheak (CEA, INAC-SP2M, Nanophysique et Semiconducteurs Group)
Mariette, Henri (CEA, INAC-SP2M, Nanophysique et Semiconducteurs Group)
Dang, Le Si (Department of NANOscience, Institut Neel, CNRS)
Publication Information
Current Optics and Photonics / v.2, no.6, 2018 , pp. 589-594 More about this Journal
Abstract
We have investigated the dimensional nature of center-of-mass exciton confinement states in a CdMnTe/CdTe/CdMnTe heterostructure, where the CdTe well is too wide (144 nm) to confine both electrons and holes but able to confine whole excitons in the center-of-mass coordinate. Fine multiple photoluminescence spectra with a few meV separation were observed at 6 K. From the thickness dependence of the transition rate, they were attributed to even numbered center-of-mass exciton confinement states (N = 2, 4, 6, ${\cdots}$, 18). Dimensionality of the center-of-mass exciton confinement states was also investigated in terms of temperature dependence of radiative decay time. At low temperatures (${\leq}12K$), we found that the ground state excitons are likely localized possibly due to the barrier interface fluctuation, resulting in a constant decay time (~350 ps). With increased temperature (${\geq}12K$), localized excitons are thermally released, giving rise to a linear temperature dependence of radiative decay time as an evidence of two-dimensional nature.
Keywords
Center-of-mass exciton; Radiative decay time; Dimensional nature; Excitation-correlation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. von der Linde, J. Kuhl, and E. Rosengart, "Picosecond correlation effects in the hot luminescence of GaAs," J. Lum. 24/25, 675-678 (1981).   DOI
2 A. M. de Paula, R. A. Taylor, C. W. W. Bradley, A. J. Turberfield, and J. F. Ryan, "Investigation of inter-valley scattering and hot phonon dynamics in GaAs quantum wells using femtosecond luminescence intensity correlation," Superlattice. Microst. 6, 199-202 (1989).   DOI
3 R. Mondal, B. Bansal, A. Mandal, S. Chakrabarti, and B. Pal, "Pauli blocking dynamics in optically excited quantum dots: A picosecond excitation-correlation spectroscopic study," Phys. Rev. B 87, 115317 (2013).   DOI
4 L. Besombes, K. Kheng, L. Marsal, and H. Mariette, "Acoustic phonon broadening mechanism in single quantum dot emission," Phys. Rev. B 63, 155307 (2001).   DOI
5 L. C. Andreani, A. d'Andrea, and R. del Sole, "Excitons in confined systems: from quantum well to bulk behaviour," Phys. Lett. A 168, 451-459 (1992).   DOI
6 R. C. Miller, D. A. Kleinman, W. A. Nordland, Jr., and A. C. Gossard, "Luminescence studies of optically pumped quantum wells in $GaAs-Al_xGa_{1-x}As$ multilayer structures," Phys. Rev. B 22, 863-871 (1980).
7 D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, "Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy," J. Appl. Phys. 103, 063502 (2008).   DOI
8 C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, "Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils," Appl. Phys. Lett. 94, 261904 (2009).   DOI
9 M. Lomascolo, P. Ciccarese, R. Cingolani, R. Rinaldi, and F. K. Reinhart, "Free versus localized exciton in GaAs V-shaped quantum wires," J. Appl. Phys. 83, 302-305 (1998).   DOI
10 M. Colocci, M. Gurioli, and J. Martinez-Pastor, "Exciton relaxation dynamics in quantum well heterostructures," Le J. Phys. IV 3, C5-3-C5-10 (1993).
11 L. C. Andreani, "Radiative lifetime of free excitons in quantum wells," Solid State Commun. 77, 641-645 (1991).   DOI
12 N. Magnea, F. Dal'bo, C. Fontaine, A. Million, J. P. Gaillard, L. S. Dang, Y. M. d'Aubigne, and S. Tatarenko, "Mismatch strain measurements of MBE grown CdTe," J. Cry. Grow. 81, 501-504 (1987).   DOI
13 H. Tuffigo, R. T. Cox, G. Lentz, and N. Magnea, "Optical properties of excitons in II-VI quantum wells: importance of centre-of-mass quantization," J. Cry. Grow. 101, 778-782 (1990).   DOI
14 H. Mariette, N. Magnea, and H. Tuffigo, "Optical investigation of CdTe/CdZnTe Heterostructures," Phys. Scripta T39, 204-210 (1991).   DOI
15 H. Tuffigo, B. Lavigne, R. T. Cox, G. Lentz, and N. Magnea, "Strong effects of electron-hole Coulomb interaction on optical properties of CdTe quantum wells," Surf. Sci. 229, 480-483 (1990).   DOI
16 Y. M. d'Aubigné, L. S. Dang, A. Wasiela, N. Magnea, F. d'Albo, and A. Million, "Quantization of excitonic polaritons in CdTe-CdZnTe double heterostructures," J. Phys. Colloques 48, C5-363-C5-366 (1987).
17 H. Tuffigo, R. T. Cox, N. Magnea, Y. M. d'Aubigne, and A. Million, "Luminescence from quantized excitonpolariton states in $Cd_{1-x}Zn_xTe/CdTe/Cd_{1-x}Zn_xTe$ thin-layer heterostructures," Phys. Rev. B 37, 4310-4313 (1988).   DOI
18 H. Kim, W. Lee, S. Park, K. Kyhm, K. Je, R. A. Taylor, G. Nogues, L. S. Dang, and J. D. Song, "Quasi-one-dimensional density of states in a single quantum ring," Sci. Rep. 7, 40026 (2017).   DOI
19 J. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, "Linewidth dependence of radiative exciton lifetimes in quantum wells," Phys. Rev. Lett. 59, 2337-2340 (1987).   DOI
20 H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, "Thermalization effect on radiative decay of excitons in quantum wires," Phys. Rev. Lett. 72, 924-927 (1994).   DOI
21 K. Kheng, R. T. Cox, Y. M. d'Aubigne, F. Bassani, K. Saminadayar, and S. Tatarenko, "Observation of negatively charged excitons X- in semiconductor quantum wells," Phys. Rev. Lett. 71, 1752-1755 (1993).   DOI
22 W. Lee, T. Kiba, A. Murayama, C. Sartel, V. Sallet, I. Kim, R. A. Taylor, Y. D. Jho, and K. Kyhm, "Temperature dependence of the radiative recombination time in ZnO nanorods under an external magnetic field of 6T," Opt. Express 22, 17959-17967 (2014).   DOI
23 S. Chen, M. Yoshita, A. Ishikawa, T. Mochizuki, S. Maruyama, H. Akiyama, Y. Hayamizu, L. N. Pfeiffer, and K. W. West, "Intrinsic radiative lifetime derived via absorption cross section of one-dimensional excitons," Sci. Rep. 3, 1941 (2013).   DOI
24 G. W. p't Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, "Giant oscillator strength of the excitons in GaAs," Phys. Rev. B 35, 8281-8284 (1987).   DOI
25 H. P. Wagner, A. Schatz, R. Maier, W. Langbein, and J. M. Hvam, "Interaction and dephasing of center-of-mass quantized excitons in wide $ZnSe/Zn_{0.94}Mg_{0.06}Se$ quantum wells," Phys. Rev. B 57, 1791-1796 (1998).   DOI
26 I. Lawrence, G. Feuillet, H. Tuffigo, C. Bodin, J. Cibert, and W. W. Ruhle, "Optical study of an asymmetric double quantum well system: CdTe/CdMnTe," Acta Phys. Pol. A 84, 637-640 (1993).   DOI
27 O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, "Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe," Phys. Rev. B 50, 10780-10787 (1994).   DOI
28 H.-z. Wu, A.-l. Yang, J.-z. Wu, Z.-z. Li, "Exciton properties of diluted CdTe/CdMnTe quantum wells," Chin. Phys. Lett. 15, 734-736 (1998).   DOI
29 J. J. Hoffield and D. G. Thomas, "Theoretical and experimental effects of spatial dispersion on the optical properties of crystals," Phys. Rev. 132, 563-572 (1963).   DOI