Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.6.499

Investigation of a Photothrombosis Inducing System for an Observation of Transient Variations in an in vivo Rat Brain  

Oh, Sung Suk (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Park, Hye Jin (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Min, Han Sol (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Kim, Sang Dong (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Bae, Seung Kuk (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Kim, Jun Sik (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Ryu, Rae-Hyung (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Kim, Jong Chul (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Kim, Sang Hyun (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Lee, Seong-jun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Kang, Bong Keun (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Choi, Jong-ryul (Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF))
Sohn, Jeong-woo (Department of Medical Science, Catholic Kwandong University, International St. Mary's Hospital)
Publication Information
Current Optics and Photonics / v.2, no.6, 2018 , pp. 499-507 More about this Journal
Abstract
For the spatiotemporally aligned observation of photothrombosis induction and transient variations of in vivo brain stroke, we developed a novel photothrombosis inducing system compatible to a magnetic resonance imaging (MRI) system using nonmagnetic stereotaxic equipment. From the spatial point of view, the system provides a more reliable level of reproducibility of the photothrombosis in each brain. From the temporal point of view, from T1- and T2-weighted in vivo MR (magnetic resonance) images, the transient variations such as incidence, location, and size of the thrombosis are measured quantitatively. In addition, the final variation is observed in the ex vivo brain by TTC (Triphenyltetrazolium chloride) staining based on histological assay and utilized for the verification of the MR images. From the experimental result of the rat brain, the proposed system shows more reliable characteristics for transient variations of brain strokes.
Keywords
Artificial thrombosis generations; Photothrombosis; Cerebral ischemic brain damages; Magnetic resonance imaging; Histological assay;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. H. Hashemi, W. G. Bradley, and C. J. L. Philadelphia, MRI: The Basics, Third Edition (Lippincott, Williams & Wilkins, Philadelphia, PA, United States, 2010).
2 P. Heo, J. H. Seo, S. D. Han, Y. Ryu, J. D. Byun, K. N. Kim, and J. H. Lee, "Multi-port-driven birdcage coil for multiple-mouse MR imaging at 7 T," Scanning 38, 747-756 (2016).   DOI
3 W. Chen, J. You, X. Gu, C. Du, and Y. Pan, "High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging," Sci. Rep. 6, 38786 (2016).   DOI
4 L. J. Rich and M. Seshadri, "Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level-dependent MR imaging," Radiology 275, 110-118 (2015).   DOI
5 C. Yeo, H. Kim, and C. Song, "Cerebral blood flow monitoring by diffuse speckle contrast analysis during MCAO surgery in the rat," Curr. Opt. Photon. 1, 433-439 (2017).
6 V. Pinskiy, J. Jones, A. S. Tolpygo, N. Franciotti, K. Weber, and P. P. Mitra, "High-throughput method of whole-brain sectioning, using the tape-transfer technique," PLoS One 10, e0102363 (2015).   DOI
7 L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, "Label-free photoacoustic tomography of whole mouse brain structures ex vivo," Neurophotonics 3, 035001 (2016).   DOI
8 S. P. Amato, F. Pan, J. Schwartz, and T. M. Ragan, "Whole brain imaging with serial two-photon tomography," Front. Neuroanat. 10, 31 (2016).
9 S. Ikeda, K. Harada, Ohwatashi, Y. Kamikawa, A. Yoshida, and K. Kawahira, "A new non-human primate model of photochemically induced cerebral infarction," PLoS One 8, e60037 (2013).   DOI
10 J. Xu, H. Ruan, Y. Liu, H. Zhou, and C. Yang, "Focusing light through scattering media by transmission matrix inversion," Opt. Express 25, 27234-27246 (2017).   DOI
11 P. F. Bodary and D. T. Eitzman, "Animal models of thrombosis," Curr. Opin. Hematol. 16, 342-346 (2009).   DOI
12 Y. N. Zubkov, B. M. Nikiforov, and V. A. Shustin, "Balloon catheter technique for dilatation of constricted cerebral arteries after aneurysmal SAH," Acta Neurochir. 70, 65-79 (1984).   DOI
13 J. Schofer, M. Schlüter, A. H. Gershlick, W. Wijns, E. Garcia, E. Schampaert, and G. Breithardt, "Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS)," Lancet 362, 1093-1099 (2003).   DOI
14 B. Kreft, H. Strunk, S. Flacke, M. Wolff, R. Conrad, J. Gieseke, D. Pauleit, R. Bachmann, A. Hirner, and H. H. Schild, "Detection of thrombosis in the portal venous system: comparison of contrast-enhanced MR angiography with intraarterial digital subtraction angiography," Radiology 216, 86-92 (2000).   DOI
15 Z. A. Fayad, V. Fuster, K. Nikolaou, and C. Becker, "Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts," Circulation 106, 2026-2034 (2002).   DOI
16 M. Dittmar, T. Spruss, G. Schuierer, and M. Horn, "External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats," Stroke 34, 2252-2257 (2003).   DOI
17 F. Fluri, M. K. Schuhmann, and C. Kleinschnitz, "Animal models of ischemic stroke and their application in clinical research," Drug Des. Devel. Ther. 9, 3445-3454 (2015).
18 H. Albadawi, A. A. Witting, Y. Pershad, A. Wallace, A. R. Fleck, P. Hoang, A. Khademhosseini, and R. Oklu, "Animal models of venous thrombosis," Cardiovasc. Diagn. Ther. 7, S197-S206 (2017).   DOI
19 W. I. Rosenblum and F. El-Sabban, "Platelet aggregation in the cerebral microcirculation: effect of aspirin and other agents," Circ. Res. 40, 320-328 (1977).   DOI
20 R. Horisaki, R. Takagi, and J. Tanida, "Learning-based focusing through scattering media," Appl. Opt. 56, 4358-4362 (2017).   DOI
21 J. Yoon, M. Lee, K. Lee, N. Kim, J. M. Kim, J. Park, H. Yu, C. Choi, W. D. Heo, and Y. Park, "Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping," Sci. Rep. 5, 13289 (2015).   DOI
22 D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, "Focusing through dynamic tissue with millisecond digital optical phase conjugation," Optica 2, 728-735 (2015).   DOI
23 P. Lai, Y. Suzuki, X. Xu, and L. V. Wang, "Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media," Laser Phys. Lett. 10, 075604 (2013).   DOI
24 I. M. Vellekoop and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007).   DOI
25 F. Fluri, M. K. Schuhmann, and C. Kleinschnitz, "Animal models of ischemic stroke and their application in clinical research," Drug Des. Devel. Ther. 9, 3445-3454 (2015).
26 B. D. Watson, W. D. Dietrich, R. Busto, M. S. Wachtel, and M. D. Ginsberg, "Induction of reproducible brain infarction by photochemically initiated thrombosis," Ann. Neurol. 17, 497-504 (1985).   DOI
27 H. Yao, H. Sugimori, K. Fukuda, J. Takada, H. Ooboshi, T. Kitazono, S. Ibayashi, and M. Iida, "Photothrombotic middle cerebral artery occlusion and reperfusion laser system in spontaneously hypertensive rats," Stroke 34, 2716-2721 (2003).   DOI
28 V. Labat-gest and S. Tomasi, "Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies," J. Vis. Exp. 76, 50370 (2013).
29 Q. Liu, Y. Li, H. Lu, and S. Tong, "Real-time high resolution laser speckle imaging of cerebral vascular changes in a rodent photothrombosis model," Biomed. Opt. Express 5, 1483-1493 (2014).   DOI
30 A. M. Barth and I. Mody, "Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo," J. Neurosci. 31, 851-860 (2011).   DOI
31 M. Schroeter, S. Jander, and G. Stoll, "Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses," J. Neurosci. Methods 117, 43-49 (2002).   DOI
32 S. K. Moon, M. Alaverdashvili, A. R. Cross, and I. Q. Whishaw, "Both compensation and recovery of skilled reaching following small photothrombotic stroke to motor cortex in the rat," Exp. Neurol. 218, 145-153 (2009).   DOI
33 A. Benedek, K. Moricz, Z. Juranyi, G. Gigler, G. Levay, L. G. Harsing, Jr., P. Matyus, G. Szenasi, and M. Albert, "Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats," Brain Res. 1116, 159-165 (2006).   DOI
34 J. B. Bertrand, J. B. Langlois, M. Bégou, J. Volle, P. Brun, T. d'Amato, M. Saoud, and M. F. Suaud-Chagny, "Longitudinal MRI monitoring of brain damage in the neonatal ventral hippocampal lesion rat model of schizophrenia," Hippocampus 20, 264-278 (2010).
35 M. Kramer, J. Dang, F. Baertling, B. Denecke, T. Clarner, C. Kirsch, C. Beyer, and M. Kipp, "TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses," J. Neurosci. Methods 187, 84-89 (2010).   DOI
36 E. Busch, K. Krüger, P. R. Allegrini, C. M. Kerskens, M. L. Gyngell, M. Hoehn-Berlage, and K. A. Hossmann, "Reperfusion after thrombolytic therapy of embolic stroke in the rat: magnetic resonance and biochemical imaging," J. Cereb. Blood Flow Metab. 18, 407-418 (1998).   DOI
37 U. Guerrini, L. Sironi, E. Tremoli, M. Cimino, B. Pollo, A. M. Calvio, R. Paoletti, and M. Asdente, "New insights into brain damage in stroke-prone rats: a nuclear magnetic imaging study," Stroke 33, 825-830 (2002).   DOI
38 R. Uppal, I. Ay, G. Dai, Y. R. Kim, A. G. Sorensen, and P. Caravan, "Molecular MRI of intracranial thrombus in a rat ischemic stroke model," Stroke 41, 1271-1277 (2010).   DOI
39 U. I. Tuor and M. Qiao, "Magnetic resonance imaging detection of multiple ischemic injury produced in an adult rat model of minor stroke followed by mild transient cerebral ischemia," MAGMA 30, 175-188 (2017).   DOI
40 M.-C. Lee, C.-Y. Jin, H.-S. Kim, J.-H. Kim, M.-K. Kim, H.-I. Kim, Y.-J. Kim, Y.-J. Son, Y.-O. Kim, and Y.-J. Woo, "Stem cell dynamics in an experimental model of stroke," Chonnam Med. J. 47, 90-98 (2011).   DOI
41 X. B. Li, M. X. Ding, C. L. Ding, L. L. Li, J. Feng, and X. J. Yu, "Toll-Like receptor 4 promotes the phosphorylation of CRMP2 via the activation of Rho-kinase in MCAO rats," Mol. Med. Rep. 18, 342-348 (2018).
42 U. I. Tuor, Q. Deng, D. Rushforth, T. Foniko, and M. Qiao, "Model of minor stroke with mild peri-infarct ischemic injury," J. Neurosci. Methods 268, 56-65 (2016).   DOI
43 K. C. Chan, I. Y. Zhou, S. S. Liu, Y. van der Merwe, S.-J. Fan, V. K. Hung, S. K. Chung, W. Wu, K. So, and E. X. Wu, "Longitudinal assessments of normal and perilesional tissues in focal brain ischemia and partial optic nerve injury with manganese-enhanced MRI," Sci. Rep. 7, 43124 (2017).   DOI
44 A. Sigler, A. Goroshkov, and T. H. Murphy, "Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope," J. Neurosci. Methods 170, 35-44 (2008).   DOI
45 M. Alaverdashvili, P. G. Paterson, and M. P. Bradley, "Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model," J. Neurosci. Methods 247, 58-66 (2015).   DOI
46 R. Weber, S. Wegener, P. Ramos-Cabrer, D. Wiedermann, and M. Hoehn, "MRI detection of macrophage activity after experimental stroke in rats: new indicators for late appearance of vascular degradation?," Magn. Reson. Med. 54, 59-66 (2005).   DOI
47 S. J. Chang, J. H. Cherng, D. H. Wang, S. P. Yu, N. H. Liou, M. L. Hsu, "Transneuronal degeneration of thalamic nuclei following middle cerebral artery occlusion in rats," Biomed. Res. Int. 2016, 3819052 (2016).
48 M. Misir, M. Renic, M. Mihalj, S. Novak S, and I. Drenjancevic, "Is shorter transient middle cerebral artery occlusion (t-MCAO) duration better in stroke experiments on diabetic female Sprague Dawely rats?," Brain Inj. 30, 1390-1396 (2016).   DOI
49 H. Lu, Y. Li, B. Bo, L. Yuan, X. Lu, H. Li, and S. Tong, "Hemodynamic effects of intraoperative anesthetics administration in photothrombotic stroke model: a study using laser speckle imaging," BMC Neurosci. 18, 10 (2017).   DOI
50 C. Qian, P. C. Li, Y. Jiao, H. H. Yao, Y. C. Chen, J. Yang, J. Ding, X. Y. Yang, and G. J. Teng, "Precise characterization of the penumbra revealed by MRI: a modified photothrombotic stroke model study," PLoS One 11, e0153756 (2016).   DOI
51 M. Tanaka, Y. Ishihara, S. Mizuno, A. Ishida, C. F. Vogel, M. Tsuji, T. Yamazaki, and K. Itoh, "Progression of vasogenic edema induced by activated microglia under permanent middle cerebral artery occlusion," Biochem. Biophys. Res. Commun. 496, 582-587 (2018).   DOI
52 Y. Yang, K. Gao, Z. Hu, W. Li, H. Davies, S. Ling, J. A. Rudd, and M. Fang, "Autophagy upregulation and apoptosis downregulation in DAHP and Triptolide treated cerebral ischemia," Mediators Inflamm. 2015, 120198 (2015).
53 J.-H. Kim, "T1-, T2-weighted, and FLAIR imaging: clinical application," J. Korean Soc. Magn. Reson. Med. 13, 9-14 (2009).
54 J. Yan, B. Zhou, S. Taheri, and H. Shi, "Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke," PLoS One 6, e27798 (2011).   DOI
55 P. H. Pevsner, J. W. Eichenbaum, D. C. Miller, G. Pivawer, K. D. Eichenbaum, A. Stern, K. L. Zakian, and J. A. Koutcher, "A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation," J. Pharmacol. Toxicol. Methods 45, 227-233 (2001).   DOI
56 D. Lanens, M. Spanoghe, J. Van Audekerke, A. Oksendal, A. Van der Linden, and R. Dommisse, "Complementary use of T2-weighted and postcontrast T1- and T2*-weighted imaging to distinguish sites of reversible and irreversible brain damage in focal ischemic lesions in the rat brain," Magn. Reson. Imaging 13, 185-192 (1995).   DOI
57 R. Brown, Y.-C. N. Cheng, M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second Edition (John Wiley & Sons, Inc., Hoboken, NJ, United States, 2014).
58 G. Lippi, M. Franchini, and G. Targher, "Arterial thrombus formation in cardiovascular disease," Nat. Rev. Cardiol. 8, 502 (2011).   DOI
59 B. Furie and B. C. Furie, "Mechanisms of thrombus formation," New Eng. J. Med. 359, 938-949 (2008).   DOI
60 T. H. Spaet, E. Gaynor, and M. B. Stemerman, "Thrombosis, atherosclerosis, and endothelium," Am. Heart J. 87, 661-668 (1974).   DOI
61 F. Xie, X. Li, K. Sun, Y. Chu, H. Cao, N. Chen, W. Wang, M. Liu, W. Liu, and D. Mao, "An experimental study on drugs for improving blood circulation and removing blood stasis in treating mild chronic hepatic damage," J. Trandt. Chin. Med. 21, 225-231 (2001).
62 N. Korin, M. Kanapathipillai, B. D. Matthews, M. Crescente, A. Brill, T. Mammoto, K. Ghosh, S. Jurek, S. A. Bencherif, D. Bhatta, A. U. Coskun, C. L. Feldman, D. D. Wagner, and D. E. Ingber, "Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels," Science 337, 1453 (2012).
63 S. Prasad, R. S. Kashyap, J. Y. Deopujari, H. J. Purohit, G. M. Taori, and H. F. Daginawala, "Development of an in vitro model to study clot lysis activity of thrombolytic drugs," Thromb. J. 4, 14 (2006).