Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.5.468

Temperature Dependence of Efficiency Droop in GaN-based Blue Light-emitting Diodes from 20 to 80℃  

Ryu, Guen-Hwan (Department of Physics, Inha University)
Seo, Dong-Joo (Department of Physics, Inha University)
Ryu, Han-Youl (Department of Physics, Inha University)
Publication Information
Current Optics and Photonics / v.2, no.5, 2018 , pp. 468-473 More about this Journal
Abstract
We investigate the temperature dependence of efficiency droop in InGaN/GaN multiple-quantum-well (MQW) blue light-emitting diodes (LEDs) in the temperature range from 20 to $80^{\circ}C$. When the external quantum efficiency (EQE) and the wall-plug efficiency (WPE) of the LED sample were measured as injection current and temperature varied, the droop of EQE and WPE was found to be reduced with increasing temperature. As the temperature increased from 20 to $80^{\circ}C$, the droop ratio of EQE was decreased from 16% to 14%. This reduction in efficiency droop with temperature can be interpreted by a temperature-dependent carrier distribution in the MQWs. When the carrier distribution and radiative recombination rate in MQWs were simulated and compared for different temperatures, the carrier distribution was found to become increasingly homogeneous as the temperature increased, which is believed to partly contribute to the reduction in efficiency droop with increasing temperature.
Keywords
GaN; Light-emitting diode; Quantum well; Efficient droop; Temperature;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, "White light emitting diodes with super-high luminous efficacy," J. Phys. D: Appl. Phys. 43, 354002 (2010).   DOI
2 J. Piprek, "Efficiency droop in nitride-based light-emitting diodes," Phys. Status Solidi A 207, 2217-2225 (2010).   DOI
3 G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," J. Appl. Phys. 114, 071101 (2013).   DOI
4 Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007).   DOI
5 M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007).   DOI
6 J. I. Shim, H. Kim, D. S. Shin, and H. Y. Ryu, "An explanation of efficiency droop in InGaN-based light emitting diodes: Saturated radiative recombination rate at randomly distributed In-rich active areas," J. Korean Phys. Soc. 58, 503-508 (2011).   DOI
7 F. Nippert, S. Y. Karpov, G. Callsen, B. Galler, T. Kure, C. Nenstiel, M. R. Wagner, M. Strassburg, H. J. Lugauer, and A. Hoffmann, "Temperature-dependent recombination coefficients in InGaN light-emitting diodes: Hole localization, Auger processes, and the green gap," Appl. Phys. Lett. 109, 161103 (2016).   DOI
8 H. Y. Ryu, D. S. Shin, and J. I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Appl. Phys. Lett. 100, 131109 (2012).   DOI
9 D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, "Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes," Appl. Phys. Lett. 100, 081106 (2012).   DOI
10 P. Tian, J. J. D. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, "Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes," Appl. Phys. Lett. 105, 171107 (2014).   DOI
11 J. Mickevicius, J. Jurkevicius, A. Kadys, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, "Temperaturedependent efficiency droop in AlGaN epitaxial layers and quantum wells," AIP Adv. 6, 045212 (2016).   DOI
12 K. Kim, J. Cho, D. S. Meyaard, G. B. Lin, E. F. Schubert, and J. K. Kim, "Temperature dependence of efficiency in GaInN/GaN light-emitting diodes with a GaInN underlayer," Int. J. Appl. Ceram. Technol. 13, 234-238 (2016).   DOI
13 L. Zhao, D. Yan, Z. Zhang, B. Hua, G. Yang, Y. Cao, E. X. Zhang, X. Gu, and D. M. Fleetwood, "Temperature-dependent efficiency droop in GaN-based blue LEDs," IEEE Electron. Dev. Lett. 39, 528-531 (2018).   DOI
14 A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, "Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 92, 053502 (2008).   DOI
15 M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, "Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes," Appl. Phys. Lett. 91, 231114 (2007).   DOI
16 L. Wang, J. Jin, C. Mi, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, "A review on experimental measurements for understanding efficiency droop in InGaN-based light-emitting diodes," Materials 207, 1233 (2017).
17 M. A. Hopkins, D. W. E. Allsopp, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, "The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes," J. Appl. Phys. 122, 234505 (2017).   DOI
18 H. Y. Ryu and J. I. Shim, "Effect of current spreading on the efficiency droop of InGaN light-emitting diodes," Opt. Express 19, 2886-2894 (2011).   DOI
19 D. S. Shin, D. P. Han, J. Y. Oh, and J. I. Shim, "Study of droop phenomena in InGaN-based blue and green lightemitting diodes by temperature-dependent electroluminescence," Appl. Phys. Lett. 100, 153506 (2012).   DOI
20 F. Zhang, N. Can, S. Hafiz, M. Monavarian, S. Das, V. Avrutin, U. Ozgur, and H. Morkoc, "Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers," Appl. Phys. Lett. 106, 181105 (2015).   DOI
21 J. Piprek, "Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes," Appl. Phys. Lett. 109, 021104 (2016).   DOI
22 H. Y. Ryu, K. S. Jeon, M. G. Kang, H. K. Yuh, Y. H. Choi, and J. S. Lee, "A comparative study of efficiency droop and internal electric field for InGaN blue light-emitting diodes on silicon and sapphire substrates," Sci. Rep. 7, 44814 (2017).   DOI
23 APSYS by Crosslight Software, Inc., Burnaby, Canada, Available: http://www.crosslight.com.
24 J. Piprek, "AlGaN polarization doping effects on the efficiency of blue LEDs," Proc. SPIE 8262, 82620E (2012).
25 S. H. Park and Y. T. Moon, "Temperature droop characteristics of internal quantum efficiency in InGaN/GaN quantum well light-emitting diodes," IEEE Photon. J. 6, 1600209 (2014).
26 C. D. Santi, M. Meneghini, M. L. Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, "Role of defects in the thermal droop of InGaN-based light emitting diodes," J. Appl. Phys. 119, 094501 (2016).   DOI
27 M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht, and P. P. Ruden, "Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries," IEEE Trans. Electron. Devices 48, 535-542 (2001).   DOI
28 J. R. Chen, Y. C. Wu, S. C. Ling, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, S. C. Wang, "Investigation of wavelength-dependent efficiency droop in InGaN lightemitting diodes," Appl. Phys. B 98, 779-789 (2010).   DOI
29 J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003), Chapter 9.
30 H. Y. Ryu and K. H. Ha, "Effect of active-layer structures on temperature characteristics of InGaN blue laser diodes," Opt. Express 16, 10849-10857 (2008).   DOI
31 H. Y. Ryu, "Investigation into the anomalous temperature characteristics of InGaN double quantum well blue laser diodes using numerical simulation," Nanoscale Res. Lett. 12, 366 (2017).   DOI
32 J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, "White light-emitting diodes: History, progress, and future," Laser Photon. Rev. 11, 1600147 (2017).   DOI
33 Y. H. Choi, G. H. Ryu, and H. Y. Ryu, "Evaluation of the temperature-dependent internal quantum efficiency and the light-extraction efficiency in a GaN-based blue light-emitting diode by using a rate equation model," J. Korean Phys. Soc. 69, 1286-1289 (2016).   DOI
34 S. Tanaka, Y. Zhao, I. Koslow, C. C. Pan, H. T. Chen, J. Sonoda, S. P. DenBaars, and S. Nakamura, "Droop improvement in high current range on PSS-LEDs," Electron. Lett. 47, 335-336 (2011).   DOI
35 H. Y. Ryu, G. H. Ryu, Y. H. Choi, and B. J. Ma, "Modeling and simulation of efficiency droop in GaN-based blue light-emitting diodes incorporating the effect of reduced active volume of InGaN quantum wells," Curr. Appl. Phys. 17, 1298-1302 (2017).   DOI
36 V. Fiorentini, F. Bernardini, and O. Ambacher, "Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures," Appl. Phys. Lett. 80, 1204-1206 (2002).   DOI
37 P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015).   DOI
38 J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, "Progress in high-luminance LED technology for solid-state lighting," Phys. Status Solidi A 214, 1600826 (2017).   DOI