Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.5.460

Three-dimensional Refractive-index Distributions of Individual Angiosperm Pollen Grains  

Park, Chansuk (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST))
Lee, SangYun (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST))
Kim, Geon (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST))
Lee, SeungJun (Daedeok High School)
Lee, Jaehoon (Daedeok High School)
Heo, Taehyun (Daedeok High School)
Park, Yoonjeong (Daedeok High School)
Park, YongKeun (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST))
Publication Information
Current Optics and Photonics / v.2, no.5, 2018 , pp. 460-467 More about this Journal
Abstract
Three-dimensional (3D) refractive-index (RI) imaging and quantitative analyses of angiosperm pollen grains are presented. Using optical diffraction tomography, the 3D RI structures of individual angiosperm pollen grains were measured without using labeling or other preparation techniques. Various physical quantities including volume, surface area, exine volume, and sphericity were determined from the measured RI tomograms of pollen grains. Exine skeletons, the distinct internal structures of angiosperm pollen grains, were identified and systematically analyzed.
Keywords
Optical diffraction tomography; Quantitative phase imaging; Biophysics; Label-free; Pollen grain; Angiosperm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. L. Dilcher, "Early angiosperm reproduction: an introductory report," Rev. Palaeobot. Palynology 27, 291-328 (1979).   DOI
2 W. W. Payne, "Observations of harmomegathy in pollen of Anthophyta," Grana 12, 93-98 (1972).   DOI
3 E. Katifori, S. Alben, E. Cerda, D. R. Nelson, and J. Dumais, "Foldable structures and the natural design of pollen grains," Proc. Natl. Acad. Sci. U. S. A. 107, 7635-7639 (2010).   DOI
4 Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Optical diffraction tomography for high resolution live cell imaging," Opt. Express 17, 266-277 (2009).   DOI
5 J. Yoon, S.-A. Yang, K. Kim, and Y. Park, "Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation)," in Quantitative Phase Imaging II (International Society for Optics and Photonics, 2016), 97180L.
6 S. A. Yang, J. Yoon, K. Kim, and Y. Park, "Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease," Cytom. Part A 91, 510-518 (2017).   DOI
7 T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, "White-light diffraction tomography of unlabelled live cells," Nat. Photon. 8, 256-263 (2014).   DOI
8 K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, "High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography," J. Biomed. Opt. 19, 011005 (2014).
9 H. Lindner, S. A. Kessler, L. M. Müller, H. Shimosato-Asano, A. Boisson-Dernier, and U. Grossniklaus, "TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation," PLoS. Biol. 13, e1002139 (2015).   DOI
10 J. Atlagic, S. Terzic, and A. Marjanovic-Jeromela, "Staining and fluorescent microscopy methods for pollen viability determination in sunflower and other plant species," Ind. Crop. Prod. 35, 88-91 (2012).   DOI
11 K. Kim, J. Yoon, and Y. Park, "Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography," Optica 2, 343-346 (2015).   DOI
12 M. Chica, "Authentication of bee pollen grains in brightfield microscopy by combining one-class classification techniques and image processing," Microsc. Res. Tech. 75, 1475-1485 (2012).   DOI
13 S. Shin, K. Kim, T. Kim, J. Yoon, K. Hong, J. Park, and Y. Park, "Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells," in Quantitative Phase Imaging II (International Society for Optics and Photonics, 2016), 971814.
14 Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, "Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells," Opt. Express 22, 10398-10407 (2014).   DOI
15 Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, "Marker-free phase nanoscopy," Nat. Photonics 7, 113 (2013).   DOI
16 T. I. Kim, B. Kwon, J. Yoon, I.-J. Park, G. S. Bang, Y. Park, Y.-S. Seo, and S.-Y. Choi, "Antibacterial Activities of Graphene Oxide-Molybdenum Disulfide Nanocomposite Films," ACS Appl. Mater. Interfaces 9, 7908-7917 (2017).   DOI
17 N. Wikstrom, V. Savolainen, and M. W. Chase, "Evolution of the angiosperms: calibrating the family tree," Proc. Biol. Sci. 268, 2211-2220 (2001).   DOI
18 R. Lewin, "Fragile forests implied by pleistocene pollen: biologists who seek signs of the american tropical forests of the pleistocene usually find arid savannahs instead," Science 226, 36-37 (1984).   DOI
19 T. M. Knight, J. A. Steets, J. C. Vamosi, S. J. Mazer, M. Burd, D. R. Campbell, M. R. Dudash, M. O. Johnston, R. J. Mitchell, and T. L. Ashman, "Pollen limitation of plant reproduction: Pattern and process," Annu. Rev. Ecol. Evol. Syst. 36, 467-497 (2005).   DOI
20 R. B. Knox, Pollen biotechnology for crop production and improvement (Cambridge University Press, 2005).
21 A. Matamoro-Vidal, C. Raquin, F. Brisset, H. Colas, B. Izac, B. Albert, and P.-H. Gouyon, "Links between morphology and function of the pollen wall: an experimental approach," Bot. J. Linnean Soc. 180, 478-490 (2016).   DOI
22 K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, "Time-multiplexed structured illumination using a DMD for optical diffraction tomography," Opt. Lett. 42, 999-1002 (2017).   DOI
23 D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, "Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging," bioRxiv, 106328 (2017).
24 J. Heslop-Harrison, Y. Heslop-Harrison, M. Cresti, A. Tiezzi, and A. Moscatelli, "Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube," J. Cell Sci. 91, 49-60 (1988).
25 H.-D. Behnke, "Transmission electron microscopy and systematics of flowering plants," in Flowering Plants (Springer, 1977), pp. 155-178.
26 E. Schrank, Scanning electron and light microscopic investigations of angiosperm pollen from the Lower Cretaceous of Egypt, Pollen et Spores (1983).
27 E. Wolf, "Three-dimensional structure determination of semitransparent objects from holographic data," Opt. Commun. 1, 153-156 (1969).   DOI
28 K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, "Optical diffraction tomography techniques for the study of cell pathophysiology," J. Biomed. Photon. Eng. 2, 020201 (2016).
29 G. Kim, S. Lee, S. Shin, and Y. Park, "Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography," Sci Rep 8, 1782 (2018).   DOI
30 M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982).   DOI
31 V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).   DOI
32 C. Park, S. Shin, and Y. Park, "Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths," arXiv preprint arXiv:1806.01067 (2018).
33 W. M. Yunus and A. B. Rahman, "Refractive index of solutions at high concentrations," Appl. Opt. 27, 3341-3343 (1988).   DOI
34 Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, "Profiling individual human red blood cells using commonpath diffraction optical tomography," Sci. Rep. 4, 6659 (2014).
35 R. Dixit and R. Cyr, "Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy," Plant J. 36, 280-290 (2003).   DOI
36 S. Wang, D. Wang, Q. Wu, K. Gao, Z. Wang, and Z. Wu, "3D imaging of a rice pollen grain using transmission X-ray microscopy," J. Synchrot. Radiat. 22, 1091-1095 (2015).   DOI
37 M. Fenner, Seeds: the ecology of regeneration in plant communities (Cabi, 2000).
38 A. Y. Cheung, Q.-h. Duan, S. S. Costa, B. H. de Graaf, V. S. Di Stilio, J. Feijo, and H.-M. Wu, "The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins," Mol. Plant. 1, 686-702 (2008).   DOI
39 L. Song, R. P. M. v. Gijlswijk, I. T. Young, and H. J. Tanke, "Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy," Cytometry 27, 213-223 (1997).   DOI
40 K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, "Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications," Sensors 13, 4170-4191 (2013).   DOI
41 G. Popescu, Quantitative phase imaging of cells and tissues (McGraw Hill Professional, 2011).
42 J. J. Skvarla and J. W. Nowicke, "Ultrastructure of pollen exine in centrospermous families," Plant Syst. Evol. 126, 55-78 (1976).   DOI
43 K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, "Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography," Opt. Express 21, 32269-32278 (2013).   DOI
44 A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, "Imaging with nature: Compressive imaging using a multiply scattering medium," Sci. Rep. 4, 5552 (2014).
45 J. Brooks and G. Shaw, "Sporopollenin: a review of its chemistry, palaeochemistry and geochemistry," Grana 17, 91-97 (1978).   DOI
46 C. A. Furness and P. J. Rudall, "Pollen aperture evolution-a crucial factor for eudicot success?," Trends Plant Sci. 9, 154-158 (2004).   DOI
47 J. W. Walker, "Evolution of exine structure in the pollen of primitive angiosperms," Am. J. Bot. 61, 891-902 (1974).   DOI
48 K. von Besser, A. C. Frank, M. A. Johnson, and D. Preuss, "Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization," Development 133, 4761-4769 (2006).   DOI
49 J. Jung, K. Kim, J. Yoon, and Y. Park, "Hyperspectral optical diffraction tomography," Opt. Express 24, 2006-2012 (2016).   DOI
50 S. Miyamura, T. Kuroiwa, and T. Nagata, "Disappearance of plastid and mitochondrial nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy," Protoplasma 141, 149-159 (1987).   DOI
51 M. Bennet, D. Gur, J. Yoon, Y. Park, and D. Faivre, "A Bacteria-Based Remotely Tunable Photonic Device," Adv. Opt. Mater. 5(2017).
52 M. Borg and D. Twell, "Pollen: structure and development," eLS (2011).
53 M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, "Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers," Opt. Lett. 40, 1881-1884 (2015).   DOI
54 J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, "Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography," bioRxiv (2017).
55 K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, "Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging," Biomed. Opt. Express 8, 5688-5697 (2017).   DOI
56 S. Shin, D. Kim, K. Kim, and Y. Park, "Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device," arXiv preprint arXiv: 1801.00854 (2018).
57 S. Blackmore and S. H. Barnes, "Harmomegathic mechanisms in pollen grains," in Linnean Society symposium series, (Academic Press, 1986), pp. 137-149.
58 R. P. Wodehouse, "Pollen grains: Their structure, identification and significance in science and medicine," J. Nerv. Ment. Dis. 86, 104 (1937).   DOI
59 Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, "Jones phase microscopy of transparent and anisotropic samples," Opt. Lett. 33, 1270-1272 (2008).   DOI
60 G. Liu, W. K. Cornwell, X. Pan, K. Cao, X. Ye, Z. Huang, M. Dong, and J. H. Cornelissen, "Understanding the ecosystem implications of the angiosperm rise to dominance: leaf litter decomposability among magnoliids and other basal angiosperms," J. Ecol. 102, 337-344 (2014).   DOI