Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.5.413

Enhancement of Signal-to-noise Ratio Based on Multiplication Function for Phi-OTDR  

Li, Meng (Key Laboratory of Operation Programming & Safety Technology of Air Traffic Management, Civil Aviation University of China)
Xiong, Xinglong (Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China)
Zhao, Yifei (Key Laboratory of Operation Programming & Safety Technology of Air Traffic Management, Civil Aviation University of China)
Ma, Yuzhao (Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China)
Publication Information
Current Optics and Photonics / v.2, no.5, 2018 , pp. 413-421 More about this Journal
Abstract
We propose a novel methodology based on the multiplication function to improve the signal-to-noise ratio (SNR) for vibration detection in a phi optical time-domain reflectometer system (phi-OTDR). The extreme-mean complementary empirical mode decomposition (ECEMD) is designed to break down the original signal into a set of inherent mode functions (IMFs). The multiplication function in terms of selected IMFs is used to determine a vibration's position. By this method, the SNR of a phi-OTDR system is enhanced by several orders of magnitude. Simulations and experiments applying the method to real data prove the validity of the proposed approach.
Keywords
phi optical time domain reflectometer system; extreme-mean complementary empirical mode decomposition; signal-to-noise ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, "The development of an phi-OTDR system for quantitative vibration measurement," IEEE Photon. Technol. Lett. 27, 1349-1352 (2015).   DOI
2 Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, "Coherent $\phi$-OTDR based on I/Q demodulation and homodyne detection," Opt. Express 24, 853-858 (2016).   DOI
3 H. He, L. Y. Shao, Z. Li, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, "Self-mixing demodulation for coherent phase-sensitive OTDR system," Sensors (Basel) 16, 681 (2016).   DOI
4 Y. Dong, X. Chen, E. Liu, C. Fu, H. Zhang, and Z. Lu, "Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer," Appl. Opt. 55, 7810-7815 (2016).   DOI
5 H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herraez, "Phase-sensitive optical time domain reflectometer assisted by first-order raman amplification for distributed vibration sensing over >100 km," J. Lightw. Technol. 8, 1510-1518 (2014).
6 B. Lu, Z. Pan, Z. Wang, H. Zheng, Q. Ye, R. Qu, and H. Cai, "High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse," Opt. Lett. 42, 391-394 (2017).   DOI
7 Y. Lu, T. Zhu, L. Chen, and X. Bao, "Distributed vibration sensor based on coherent detection of phase-OTDR," J. Lightw. Technol. 28, 3243-3249 (2010).
8 Z. Qin, L. Chen, and X. Bao, "Continuous wavelet transform for non-stationary vibration detection with phase-OTDR," Opt. Express 20, 20459-20465 (2012).   DOI
9 Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, "Phase-sensitive OTDR system based on digital coherent detection," in Proc. Asia Communications and Photonics Conference and Exhibition (China, Nov. 2011), 83110S.
10 H. Wu, S. Xiao, X. Li, Z. Wang, J. Xu, and Y. Rao, "Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry ($\phi$-OTDR)," J. Lightw. Technol. 33, 3156-3162 (2015).   DOI
11 H. He, L. Shao, H. Li, W. Pan, B. Luo, X. Zou, and L. Yan, "SNR enhancement in phase-sensitive OTDR with adaptive 2-D Bilateral filtering algorithm," IEEE Photon. J. 9, 1-10 (2017).
12 J. H. Zhang, Y. C. Han, L. Z. Li, J. Liu, and B. Che, "An improved EMD time-frequency analysis method for rocket vibration signal," in Proc Chinese Guidance, Navigation and Control Conference (China, Aug. 2014), pp. 1842-1846.
13 H. Deng, J. G. Liu, and Z. Chen, "Infrared small target detection based on modified local entropy and EMD," Chi. Opt. Lett. 8, 24-28 (2010).   DOI
14 S. Xie, Q. Zou, L. Wang, M. Zhang, Y. Li, and Y. Liao, "Positioning error prediction theory for dual Mach-Zehnder interferometric vibration sensor," J. Lightw. Technol. 29, 362-368 (2011).   DOI
15 K. Liu, M. Tian, J. F. Jiang, J. C. An, and T. H. Xu "An improved positioning algorithm in a long-range asymmetric perimeter security system," J. Lightw. Technol. 34, 5278-5283 (2016).   DOI
16 N. E. Hang, Z. Shen, S. R. Long, and M. C. Wu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. London, Ser. A 454, 903-995 (1998).   DOI
17 A. Liao, C. Shen, and P. C. Li, "Potential contrast improvement in ultrasound pulse inversion imaging using EMD and EEMD," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 317-326 (2010).   DOI
18 S. D. Hawley, L. E. Atlas, and H. J. Chizeck, "Some properties of an empirical mode type signal decomposition algorithm," IEEE Signal Process. Lett. 17, 24-27 (2010).   DOI
19 C. Pan, X. Liu, H. Zhu, X. Shan, and X. Sun, "Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR," Opt. Express 25, 20056-20070 (2017).   DOI
20 J. Tejedor, H. F. Martins, D. Piote, J. Macias-Guarasa, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillén, F. DeSmet, W. Postvoll, and M. Gonzalez-Herraez, "Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system," J. Lightw. Technol. 34, 4445-4453 (2016).   DOI
21 Z. J. Yu, Y. Lu, X. Y. Hu, and Z. Meng, "Polarization dependence of the noise of phase measurement based on phasesensitive OTDR," J. Opt. 19, 125602 (2017).   DOI
22 X. Zhang, T. Liu, K. Liu, J. Jiang, Z. Ding, and Q. Chen, "Reducing location error and processing time of dual Mach-Zehnder interferometric fiber perturbation sensor using zero-crossing analysis," in Proc. SPIE 8421, 8421A8 (2012).
23 Q. Sun, H. Feng, X. Yan, and Z. Zeng, "Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction," Sensors (Basel) 15, 15179-15197 (2015).   DOI
24 F. Peng, N. Duan, Y. Rao, and J. Li, "Real-time position and speed monitoring of trains using phase-sensitive OTDR," IEEE Photon. Technol. Lett. 26, 2055-2057 (2014).   DOI
25 H. Wu, S. Xiao, and X. Li, "Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry ($\phi$-OTDR)," J. Lightw. Technol. 33, 3156-3162 (2015).   DOI
26 J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed optical fibre sensing system enabling location of disturbances in a sagnac loop interferometer," Proc. SPIE 0838, 325-328.
27 Q. Z. Sun, D. M. Liu, J. Wang, and H. R. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).   DOI
28 L. B. Yuan, and F. Ansari, "White-light interferometric fiber-optic distributed strain-sensing system," Sens. Actuators A, 63, 177-181 (1997).   DOI
29 X. B. Hong, J. Wu, C. Zuo, F. S. Liu, H. X. Guo, and K. Xu, "Dual Michelson interferometers for distributed vibration detection," Appl. Opt. 50, 4333-4338 (2011).   DOI
30 E. Patrick, L. Matthieu, and J. Zhang, "Photon counting OTDR: advantages and limitations," J. Lightw. Technol. 28, 952-964(2010).   DOI
31 T. Zhu, Q. He, X. Xiao, and X. Bao, "Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution," Opt. Express 21, 2953-2963 (2013).   DOI
32 X. Mei, F. Pang, H. Liu, G. Yu, Y. Shao, T. Qian, C. Mou, L. Lv, and T. Wang, "Fast coarse-fine locating method for $\phi$-OTDR," Opt. Express 26, 2659-2667 (2018)   DOI
33 X. Bao and L. Chen, "Recent progress in distributed fiber optic sensors," Sensors (Basel) 12, 8601-8639 (2012).   DOI
34 Z. Zhang, and X. Bao, "Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system," Opt. Express 16, 10240-10247 (2008).   DOI
35 A. Li, Y. Wang, and Q. Hu, "Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR," Opt. Lett. 39, 6418-6421(2014).   DOI
36 J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, "Distributed fiber-optic vibration sensor system," J. Lightw. Technol. 23, 2081-2087 (2005).   DOI
37 X. Fan, G. Yang, S. Wang, Q. Liu, and Z. He, "Distributed fiber-optic vibration sensing based on phase extraction from optical reflectometry," J. Lightw. Technol. 35, 3281-3288 (2017).   DOI
38 X. Zhang, Z. Sun, Y. Shan, Y. Li, F. Wang, J. Zeng, and Y. Zhang, "A high performance distributed optical fiber sensor based on $\phi$-OTDR for dynamic strain measurement," IEEE Photon. J. 9, 1-12 (2017).
39 F. Peng, H. Wu, X.-H. Jia, Y.-J. Rao, Z.-N. Wang, and Z.-P. Peng, "Ultra-long high-sensitivity $\phi$-OTDR for high spatial resolution vibration detection of pipelines," Opt. Express 22, 13804-13810 (2014).   DOI
40 H. He, L. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, "Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing," Opt. Express 24, 4842-4855 (2016).   DOI
41 Y. Kopsinis and S. McLaughlin, "Development of EMD-based denoising methods inspired by wavelet thresholding," IEEE Trans. Signal Process. 57, 1351-1362 (2009).   DOI