Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.4.378

Resonance Characteristics of THz Metamaterials Based on a Drude Metal with Finite Permittivity  

Jun, Seung Won (Department of Physics and Department of Energy Systems Research, Ajou University)
Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University)
Publication Information
Current Optics and Photonics / v.2, no.4, 2018 , pp. 378-382 More about this Journal
Abstract
In most previous investigations of plasmonic and metamaterial applications, the metallic film has been regarded as a perfect electrical conductor. Here we demonstrate the resonance characteristics of THz metamaterials fabricated from metal film that has a finite dielectric constant, using finite-difference time-domain simulations. We found strong redshift and spectral broadening of the resonance as we decrease the metal's plasma frequency in the Drude free-electron model. The frequency shift can be attributed to the effective thinning of the metal film, originating from the increase in penetration depth as the plasma frequency decreases. On the contrary, only peak broadening occurs with an increase in the scattering rate. The metal-thickness dependence confirms that the redshift and spectral broadening occur when the effective metal thickness drops below the skin-depth limit. The electromagnetic field distribution illustrates the reduced field enhancement and reduced funneling effects near the gap area in the case of low plasma frequency, which is associated with reduced charge density in the metal film.
Keywords
Terahertz spectroscopy; Metamaterials;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Marques, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).   DOI
2 H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, "Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial," Phys. Rev. Lett. 94, 4 (2005).
3 C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, "Resonances of split-ring resonator metamaterials in the near infrared," Appl. Phys. B: Lasers Opt. 84, 219-227 (2006).   DOI
4 J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, "Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices," J. Phys. Chem. Lett. 4, 3950-3957 (2013).   DOI
5 H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nat. 444, 597-600 (2006).   DOI
6 H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nat. Photon. 2, 295-298 (2008).   DOI
7 S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, "Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film," Appl. Phys. Lett. 98, 071105 (2011).   DOI
8 D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Sci. 314, 977-980 (2006).   DOI
9 J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).   DOI
10 J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Sci. 312, 1780-1782 (2006).   DOI
11 S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, "Detection of microorganisms using terahertz metamaterials," Sci. Rep. 4, 4988 (2014).
12 J. Federici and L. Moeller, "Review of terahertz and subterahertz wireless communications," J. Appl. Phys. 107, 111101 (2010).   DOI
13 K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Nondestructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).   DOI
14 D. J. Park, S. J. Park, I. Park, and Y. H. Ahn, "Dielectric substrate effect on the metamaterial resonances in terahertz frequency range," Curr. Appl. Phys. 14, 570-574 (2014).   DOI
15 A. Menikh, R. MacColl, C. A. Mannella, and X. C. Zhang, "Terahertz biosensing technology: Frontiers and progress," ChemPhysChem 3, 655-658 (2002).   DOI
16 R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).   DOI
17 S. J. Park, A. R. Kim, J. T. Hong, J. Y. Park, S. Lee, and Y. H. Ahn, "Crystallization kinetics of lead halide perovskite film monitored by in situ terahertz spectroscopy," J. Phys. Chem. Lett. 8, 401-406 (2017).   DOI
18 M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1, 97-105 (2007).   DOI
19 J. T. Hong, D. J. Park, J. Y. Moon, S. B. Choi, J. K. Park, F. Rotermund, J. Y. Park, S. Lee, and Y. H. Ahn, "Terahertz wave applications of single-walled carbon nanotube films with high shielding effectiveness," Appl. Phys. Express 5, 3 (2012).
20 J. T. Hong, S. J. Park, J. Y. Park, S. Lee, and Y. H. Ahn, "Terahertz slot antenna devices fabricated on silver nanowire network films," Opt. Mater. Express 7, 1679-1685 (2017).   DOI
21 S. J. Park and Y. H. Ahn, "Substrate effects on terahertz metamaterial resonances for various metal thicknesses," J. Korean Phys. Soc. 65, 1843-1847 (2014).   DOI
22 R. Singh, E. Smirnova, A. J. Taylor, J. F. O'Hara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).   DOI
23 H. Guo, N. Liu, L. Fu, H. Schweizer, S. Kaiser, and H. Giessen, "Thickness dependence of the optical properties of split-ring resonator metamaterials," Phys. Status Solidi B 244, 1256-1261 (2007).   DOI
24 J. H. Kang, D. S. Kim, and M. Seo, "Terahertz wave interaction with metallic nanostructures," Nanophotonics 7, 763-793 (2018).   DOI
25 C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005).   DOI