Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.3.250

Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs  

Tabaru, Timucin Emre (Clinical Engineering Research and Application Center, Erciyes University)
Hayber, Sekip Esat (Department of Electronic and Automation, Ahi Evran University)
Saracoglu, Omer Galip (Clinical Engineering Research and Application Center, Erciyes University)
Publication Information
Current Optics and Photonics / v.2, no.3, 2018 , pp. 250-260 More about this Journal
Abstract
A pressure wave created by the photoacoustic effect is affected by the medium and by laser parameters. The effect of these parameters on the generated pressure wave can be seen by solving the photoacoustic wave equation. These solutions which are examined in the time domain and the frequency domain should be considered by researchers in acoustic sensor design. In particular, frequency domain analysis contains significant information for designing the sensor. The most important part of this information is the determination of the operating frequency of the sensor. In this work, the laser parameters to excite the medium, and the acoustic signal parameters created by the medium are analyzed. For the first time, we have obtained solutions for situations which have no frequency domain solutions in the literature. The main focal point in this work is that the frequency domain solutions of the acoustic wave equation are performed and the effects of the frequency analysis of the related parameters are shown comparatively from the viewpoint of using them in acoustic sensor designs.
Keywords
Pulsed laser photoacoustic method; Acoustic pressure sensor; Fourier transform; Frequency domain solution; Photoacoustic wave equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Lahmann, H. J. Ludewig, and H. Welling, "Opto-acoustic trace analysis in liquids with the frequency-modulated beam of an argon ion laser," Anal. Chem. 49, 549-551 (1977), doi: 10.1021/ac50012a012.   DOI
2 S. Oda, T. Sawada, and H. Kamada, "Determination of ultratrace cadmium by laser-induced photoacoustic absorption spectrometry," Anal. Chem. 50, 865-867 (1978), doi: 10.1021/acs.analchem.6b03286.   DOI
3 S. Oda, T. Sawada, M. Nomura, and H. Kamada, "Simultaneous determination of mixtures in liquid by laser-induced photoacoustic spectroscopy," Anal. Chem. 51, 686-688 (1979), doi: 10.1021/ac50042a025.   DOI
4 A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381 (1986), doi: 10.1103/RevModPhys.58.381.   DOI
5 S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, "Laser-generated ultrasound: its properties, mechanisms and multifarious applications," J. Phys. D: Appl. Phys. 26, 329 (1993), doi: 10.1088/0022-3727/26/3/001.   DOI
6 H. A. MacKenzie, G. B. Christison, P. Hodgson, and D. Blanc, "A laser photoacoustic sensor for analyte detection in aqueous systems," Sens. Actuators, B 11, 213-220 (1993), doi: 10.1016/0925-4005(93)85257-B.   DOI
7 H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, S. Spiers, "Blood glucose measurements by photoacoustics," in Proc. Biomedical Optical Spectroscopy and Diagnostics (United States, Mar. 1998), paper BTuC1, doi: 10.1364/BOSD.1998.BTuC1.   DOI
8 G. B. Christison and H. A. MacKenzie, "Laser photoacoustic determination of physiological glucose concentrations in human whole blood," Med. Biol. Eng. Comput. 31, 284-290 (1993), doi: 10.1007/BF02458048.   DOI
9 H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clin. Chem. 45, 1587-1595 (1999), ISSN: 1530-8561.
10 F. J. Harren, J. Mandon, and S. M. Cristescu, "Photoacoustic spectroscopy in trace gas monitoring," in Encyclopedia of Analytical Chemistry (1999), ISBN: 10.1002/9780470027318.a0718.pub2.   DOI
11 A. Elia, P. M. Lugara, C. De Franco, and V. Spagnolo, "Photoacoustic techniques for trace gas sensing based on semiconductor laser sources," Sensors, 9, 9616-9628 (2009), doi: 10.3390/s91209616.   DOI
12 A. Elia, C. Di Franco, P. M. Lugara, and G. Scamarcio, "Photoacoustic spectroscopy with quantum cascade lasers for trace gas detection," Sensors, 6, 1411-1419 (2006), doi: 10.2478/s11534-009-0042-8.   DOI
13 A. Miklos, P. Hess, and Z. Bozoki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001), doi: 10.1063/1.1353198.   DOI
14 J. W. Choi, M. J. You, S. W. Choi, and S. Y. Woo, "Photoacoustic laser doppler velocimetry using the self-mixing effect of RF-excited CO2 laser," J. Opt. Soc. Korea 8, 188-191 (2004), doi: 10.3807/JOSK.2004.8.4.188.   DOI
15 M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, "Recent advances of laser-spectroscopy-based techniques for applications in breathe analysis," J. Breath Res. 1, 014001 (2007), doi: 10.1088/1752-7155/1/1/014001.   DOI
16 X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, and S. Jia, "Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser," Sensors 16, 162 (2016), doi: 10.3390/s16020162.   DOI
17 P. Mohajerani, S. Kellnberger, and V. Ntziachristos, "Frequency domain optoacoustic tomography using amplitude and phase," Photoacoust. 2, 111-118 (2014), doi: 10.1016/j.pacs.2014.06.002.   DOI
18 S. Y. Nam and S. Y. Emelianov, "Array-based real-time ultrasound and photoacoustic ocular imaging," J. Opt. Soc. Korea 18, 151-155 (2014), doi: 10.3807/JOSK.2014.18.2.151.   DOI
19 R. E. Kumon, C. X. Deng, and X. Wang, "Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model," Ultrasound in Med. Biol. 37, 834-839 (2011), doi: 10.1016/j.ultrasmedbio.2011.01.012.   DOI
20 D. Wu, L. Huang, M. S. Jiang, and H. Jiang, "Contrast agents for photoacoustic and thermoacoustic imaging: a review," Int. J. Mol. Sci. 15, 23616-23639 (2014), doi: 10.3390/ijms151223616.   DOI
21 M. W. Sigrist and F. K. Kneubuhl, "Laser-generated stress waves in liquids," J. Acoust. Soc. Am. 64, 1652-1663 (1978), doi: 10.1121/1.382132.   DOI
22 C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998), doi: 10.1364/OL.23.000648   DOI
23 I. G. Calasso, W. Craig, and G. J. Diebold, "Photoacoustic point source," Phys. Rev. Lett. 86, 3550 (2001), doi: 10.1103/PhysRevLett.86.3550.   DOI
24 L. V. Wang and H. I. Wu, Biomedical optics: principles and imaging, John Wiley & Sons (2012), ISBN: 9780470177006.
25 L. V. Wang, "Tutorial on photoacoustic microscopy and computed tomography," IEEE J. Sel. Topics Quantum Electron. 14, 171-179 (2008), doi: 10.1109/JSTQE.2007.913398.   DOI
26 H. Erkol, E. Aytac-Kipergil, M. U. Arabul, and M. B. Unlu, "Analysis of laser parameters in the solution of photoacoustic wave equation," in Proc. SPIE 8581, 858136-1 (2013, March), doi: 10.1117/12.2003844.   DOI
27 H. M. Lai and K. Young, "Theory of the pulsed optoacoustic technique," J. Acoust. Soc. Am. 72, 2000-2007 (1982), doi: 10.1121/1.388631.   DOI
28 H. Erkol, E. Aytac-Kipergil, and M. B. Unlu, "Photoacoustic radiation force on a microbubble," Phys. Rev. E 90, 023001 (2014), doi: 10.1103/PhysRevE.90.023001.   DOI
29 J. Xu, X. Wang, K. L. Cooper, and A. Wang, "Miniature all-silica fiber optic pressure and acoustic sensors," Opt. Lett. 30, 3269-3271 (2005), doi: 10.1364/OL.30.003269.   DOI
30 J. Ma, Miniature fiber-tip Fabry-Perot interferometric sensors for pressure and acoustic detection (Doctoral dissertation, The Hong Kong Polytechnic University) (2014).
31 A. J. Oxenham and M. Wojtczak, "Frequency selectivity and masking. The Oxford," in Handbook of Auditory Science: Hearing, 5-44 (2010), doi: 10.1093/oxfordhb/9780199233557.013.0002.   DOI
32 Q. Gong, Y. Wang, and M. Xian, "An objective assessment method for frequency selectivity of the human auditory system," Biomed. Eng. Online 13, 171 (2014), doi: 10.1186/1475-925X-13-171.   DOI
33 Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, "HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork," Sens. Actuators, B 233, 388-393 (2016), doi:10.1016/j.snb.2016.04.114.   DOI
34 Z. Zhao, S. Nissila, O. Ahola, and R. Myllyla, "Production and detection theory of pulsed photoacoustic wave with maximum amplitude and minimum distortion in absorbing liquid," IEEE Trans. Instrum. Meas. 47, 578-583 (1998), doi: 10.1109/19.744208.   DOI
35 L. V. Wang, "Ultrasound-mediumted biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography," Dis. Markers 19, 123-138 (2004), doi: 10.1155/2004/478079.   DOI
36 K. M. Quan, G. B. Christison, H. A. MacKenzie and P. Hodgson, "Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom," Phys. Med. Biol. 38, 1911 (1993), doi: 10.1088/0031-9155/38/12/014.   DOI
37 P. M. Morse and H. Feshbach, "Methods of theoretical physics," Am. J. Phys. 22, 410-413 (1954), doi: 10.1119/1.1933765.   DOI
38 E. Aytac-Kipergil, H. Erkol, S. Kaya, G. Gulsen, and M. B. Unlu, "An analysis of beam parameters on proton-acoustic waves through an analytic approach," Phys. Med. Biol. 62, 4694 (2017), doi: 10.1088/1361-6560/aa642c.   DOI