Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.3.226

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band  

Hong, Seongjin (Institute of Physics and Applied Physics, Yonsei University)
Oh, Kyunghwan (Institute of Physics and Applied Physics, Yonsei University)
Publication Information
Current Optics and Photonics / v.2, no.3, 2018 , pp. 226-232 More about this Journal
Abstract
We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the triangular core can split the $LP_{11}$ modes. Using the proposed structures, nine independent modes can propagate in a fiber. We use a fully vectorial finite-element method to estimate effective index, chromatic dispersion, differential group delay (DGD), and confinement loss by controlling the parameters of the TMC-HOF structure. We confirm that the proposed TMC-HOF shows flattened chromatic dispersion, low DGD, low confinement loss, low core-to-core crosstalk, and low crosstalk between adjacent modes. The proposed TMC-HOF can provide a common platform for MDM and SDM applications.
Keywords
Triangular core optical fiber; Mode-division multiplexing; Space-division multiplexing; Multicore fiber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, and O. Mattes, "A throughput-optimized optical network for data-intensive computing," IEEE Micro 34, 52-63 (2014).   DOI
2 E. Agrell, M. Karlsson, A. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, and B. J. Eggleton, "Roadmap of optical communications," J. Opt. 18, 063002 (2016).   DOI
3 M. Gu, X. Li, and Y. Cao, "Optical storage arrays: a perspective for future big data storage," Light: Sci. Appl. 3, e177 (2014).   DOI
4 J. Feng and X. Zhao, "Performance analysis of FSO communication systems with photodetector multiplexing," Curr. Opt. Photon. 1, 440-455 (2017).
5 R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).   DOI
6 R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, "Capacity limits of information transport in fiber-optic networks," Phys. Rev. Lett. 101, 163901 (2008).   DOI
7 C. Xia, N. Bai, I. Ozdur, X. Zhou, and G. Li, "Supermodes for optical transmission," Opt. Express 19, 16653-16664 (2011).   DOI
8 F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, "Long distance transmission in few-mode fibers," Opt. Express 18, 13250-13257 (2010).   DOI
9 T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, "Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber," Opt. Express 19, 16576-16592 (2011).   DOI
10 D. M. Marom, and M. Blau, "Switching solutions for WDM-SDM optical networks," IEEE Commun. Mag. 53, 60-68 (2015).
11 B. Zhu, T. Taunay, M. Yan, J. Fini, M. Fishteyn, E. Monberg, and F. Dimarcello, "Seven-core multicore fiber transmissions for passive optical network," Opt. Express 18, 11117-11122 (2010).   DOI
12 A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, and K. Poturaj, "Hole-assisted multicore optical fiber for next generation telecom transmission systems," Appl. Phys. Lett. 105, 081106 (2014).   DOI
13 N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, "Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler," in Proc. Optical Fiber Communication Conference (Optical Society of America2011), p. OWA4.
14 P. Sillard, M. Bigot-Astruc, and D. Molin, "Few-mode fibers for mode-division-multiplexed systems," J. Lightw. Technol. 32, 2824-2829 (2014).   DOI
15 P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, "Few-mode fiber for uncoupled mode-division multiplexing transmissions," in Proc. European Conference and Exposition on Optical Communications (Optical Society of America 2011), p. Tu. 5. LeCervin. 7.
16 N. Riesen, J. D. Love, and J. W. Arkwright, "Few-mode elliptical-core fiber data transmission," IEEE Photon. Technol. Lett. 24, 344 (2012).   DOI
17 M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, "Design of three-spatial-mode ring-core fiber," J. Lightw. Technol. 32, 1337-1343 (2014).   DOI
18 W. Ha, S. Lee, J. Kim, Y. Jeong, K. Oh, J. Kobelke, K. Schuster, S. Unger, A. Schwuchow, and J. K. Kim, "A micro-structured aperture made of a hollow triangular-core fiber for novel beam shaping," Opt. Express 18, 20918-20925 (2010).   DOI
19 S. Lee, W. Ha, J. Kobelke, K. Schuster, S. Unger, and K. Oh, "Multicorelike guidance in a triangular-core hollow optical fiber and spectral evolution of its eigenmode degeneracy," Opt. Lett. 37, 4759-4761 (2012).   DOI
20 Y. S. Lee, C. G. Lee, Y. Jung, M.-K. Oh, and S. Kim, "Highly birefringent and dispersion compensating photonic crystal fiber based on double line defect core," J. Opt. Soc. Korea 20, 567-574 (2016).   DOI
21 B. Brixner, "Refractive-index interpolation for fused silica," J. Opt. Soc. Am. 57, 674-676 (1967).   DOI
22 M. Park, H. E. Arabi, S. Lee, and K. Oh, "Independent control of birefringence and chromatic dispersion in a photonic crystal fiber using two hollow ring defects," Opt. Commun. 284, 4914-4919 (2011).   DOI
23 K. Okamoto, Fundamentals of optical waveguides (Academic press, 2010).
24 E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986).   DOI
25 A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightw. Technol. 3, 1135-1146 (1985).   DOI
26 O. Bands, B. Laurent, and G. Draka, "From O to L: The future of optical-wavelength bands," Broadband Properties, 83-85 (2008).
27 K. Oh and U.-C. Paek, Silica optical fiber technology for devices and components: design, fabrication, and international standards (John Wiley & Sons, 2012).
28 M. R. Hasan, M. I. Hasan, and M. S. Anower, "Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands," Appl. Opt. 54, 9456-9461 (2015).   DOI
29 M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, "Design of three-spatial-mode ring-core fiber," J. Lightw. Technol. 32, 1337-1343 (2014).   DOI
30 L. Gruner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle Jr, and B. Palsdottir, "Few mode transmission fiber with low DGD, low mode coupling, and low loss," J. Lightw. Technol. 30, 3693-3698 (2012).   DOI
31 Y. S. Lee, C. G. Lee, and S. Kim, "Dispersion compensating photonic crystal fiber using double-hole assisted core for high and uniform birefringence," Optik 147, 334-342 (2017).   DOI
32 S. M. A. Razzak and Y. Namihira, "Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding," J. Lightw. Technol. 26, 1909-1914 (2008).   DOI
33 W. H. Reeves, J. C. Knight, and P. S. J. Russell, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Electron. Lett. 38, 546-547 (2002).   DOI
34 M. Ye, Y. Yang, W. Duan, and M. Yang, "Measure and redress of mode field diameter of polarization maintaining photonic crystal fibers," in Proc. 8th IEEE International Symposium on Instrumentation and Control Technology (ISICT), 101-104 (2012).
35 S. Choi, K. Oh, W. Shin, and U. C. Ryu, "Low loss mode converter based on adiabatically tapered hollow optical fibre," Electron. Lett. 37, 823-825 (2001).   DOI
36 F. Ferreira, D. Fonseca, and H. Silva, "Design of few-mode fibers with arbitrary and flattened differential mode delay," IEEE Photon. Technol. Lett. 25, 438-441 (2013).   DOI