Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.2.195

Scanning Rayleigh Doppler Lidar for Wind Profiling Based on Non-polarized Beam Splitter Cube Optically Contacted FPI  

Zheng, Jun (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Sun, Dongsong (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Chen, Tingdi (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Zhao, Ruocan (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Han, Yuli (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Li, Zimu (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Zhou, Anran (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Zhang, Nannan (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
Publication Information
Current Optics and Photonics / v.2, no.2, 2018 , pp. 195-202 More about this Journal
Abstract
A Scanning Rayleigh Doppler lidar for wind profiling based on a non-polarized beam splitter cube optically contacted FPI is developed for wind measurement from high troposphere to low stratosphere in 5-35 km. Non-polarized beam splitter cube optically contacted to the FPI are used for a stable optical receiver. Zero Doppler shift correction is used to correct for laser or FPI frequency jitter and drift and the timing sequence is designed. Stability of the receiver for Doppler shift discrimination is validated by measuring the transmissions of FPI in different days and analyzed the response functions. The maximal relative wind deviation due to the stability of the optical receiver is about 4.1% and the standard deviation of wind velocity is 1.6% due to the stability. Wind measurement comparison experiments were carried out in Jiuquan ($39.741^{\circ}N$, $98.495^{\circ}E$), Gansu province of China in 2015, showing good agreement with radiosonde result data. Continuous wind field observation was performed from October 16th to November 12th and semi-continuous wind field of 19 nights are presented.
Keywords
Rayleigh Doppler lidar; Zero Doppler shift correction; Stability validation; Continuous wind field observation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Tepley, S. Sargoytchev, and C. Hines, "Initial Doppler Rayleigh lidar results from Arecibo," Geophys. Res. Lett. 18, 167-170 (1991).   DOI
2 C. A. Tepley, S. I. Sargoytchev, and R. Rojas, "The Doppler Rayleigh lidar system at Arecibo," IEEE Trans. Geosci. Remote Sens. 31, 36-47 (1993).   DOI
3 C. Tepley, "Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar," J. Geophys. Res. 99, 25781-25790 (1994).   DOI
4 B. M. Gentry, H. Chen, and S. X. Li, "Wind measurements with 355-nm molecular Doppler lidar," Opt. Lett. 25, 1231- 1233 (2000).   DOI
5 D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, "The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results," J. Atmos. Sol. Terr. Phys. 58, 1827-1842 (1996).   DOI
6 U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000).   DOI
7 W. Baker, R. Atlas, C. Cardinali, A. Clement, G. Emmitt, B. Gentry, R. Hardesty, E. Källén, M. Kavaya, R. Langland, Z. Ma, M. Masutani, W. McCarty, R. Pierce, Z. Pu, L. Riishojgaard, J. Ryan, S. Tucker, M. Weissmann, and J. Yoe, "Lidar measured wind profiles: the missing link in the global observing system," Am. Meteorol. Soc. 10, 543-564 (2014).
8 C. L. Korb, B. M. Gentry, and C. Y. Weng, "Edge technique: theory and application to the lidar measurement of atmospheric wind," Appl. Opt. 31, 4202-4213 (1992).   DOI
9 B. M. Gentry and C. L. Korb, "Edge technique for high-accuracy Doppler velocimetry," Appl. Opt. 33, 5770-5777 (1994).   DOI
10 C. L. Korb, B. M. Gentry, and S. X. Li, "Edge technique Doppler lidar wind measurements with high vertical resolution," Appl. Opt. 36, 5976-5983 (1997).   DOI
11 C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, "Theory of the double-edge technique for Doppler lidar wind measurement," Appl. Opt. 37, 3097-3104 (1998).   DOI
12 C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, "Theory of the double-edge molecular technique for Doppler lidar wind measurement," Appl. Opt. 38, 432-440 (1999).   DOI
13 C. Flesia, C. L. Korb, and C. Hirt, "Double-edge molecular measurement of lidar wind profiles at 355 nm," Opt. Lett. 25, 1466-1468 (2000).   DOI
14 M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989).   DOI
15 A. Garnier and M. L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).   DOI
16 G. Baumgarten, "Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. 3, 1509-1518 (2010).   DOI
17 K. Salonen, G. Haase, R. Eresmaa, H. Hohtia, and H. Jarvinena, "Towards the operational use of Doppler radar radial winds in HIRLAM," Atmos. Res. 10, 190-200 (2011).
18 D. Fritts, "Gravity wave saturation in the middle atmosphere: A review of theory and observations," Rev. Geophys. Space Phys. 22, 275-308 (1984).   DOI
19 A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The atmospheric dynamics mission for global wind field measurement," Bull. Am. Meteorol. Soc. 86, 73-87 (2005).   DOI
20 R. Zhao, X. Dou, D. Sun, X. Xue, J. Zheng, Y. Han, T. Chen, G. Wang, and Y. Zhou, "Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar," Opt. Express 24, A581-A591 (2016).   DOI
21 X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, "Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere," Opt. Express 22, A1203-A1221 (2014).   DOI
22 O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, "The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument," J. Atmos. Ocean. Technol. 26, 2501-2515 (2009).   DOI
23 U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, "The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance," J. Atmos. Ocean. Technol. 26, 2516-2530 (2009).   DOI
24 F. Shen, H. Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, "Design and performance simulation of a molecular Doppler wind lidar," Chin. Opt. Lett. 7, 593-597 (2009).   DOI
25 H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, "Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method," Opt. Express 20, 15286-15300 (2012).   DOI
26 Y. Han, X. Dou, D. Sun, H. Xia, Z. Shu, "Analysis on wind retrieval methods for Rayleigh Doppler lidar," Opt. Eng. 53, 061607 (2014).
27 C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).   DOI
28 C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999).   DOI