Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.2.119

Error Accumulation and Transfer Effects of the Retrieved Aerosol Backscattering Coefficient Caused by Lidar Ratios  

Liu, Houtong (College of Mathematics, Physics and Engineering, Anhui University of Technology)
Wang, Zhenzhu (Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)
Zhao, Jianxin (Logistics and Capital Construction Management Department, Anhui University of Technology)
Ma, Jianjun (College of Mathematics, Physics and Engineering, Anhui University of Technology)
Publication Information
Current Optics and Photonics / v.2, no.2, 2018 , pp. 119-124 More about this Journal
Abstract
The errors in retrieved aerosol backscattering coefficients due to different lidar ratios are analyzed quantitatively in this paper. The actual calculation shows that the inversion error of the aerosol backscattering coefficients using the Fernald backward-integration method increases with increasing inversion distance. The greater the error in the lidar ratio, the faster the error in the aerosol backscattering coefficient increases. For the same error in lidar ratio, the smaller actual aerosol backscattering coefficient will get the larger relative error of the retrieved aerosol backscattering coefficient. The errors in the lidar ratios for dust or the cirrus layer have great impact on the retrievals of backscattering coefficients. The interval between the retrieved height and the reference range is one of the important factors for the derived error in the aerosol backscattering coefficient, which is revealed quantitatively for the first time in this paper. The conclusions of this article can provide a basis for error estimation in retrieved backscattering coefficients of background aerosols, dust and cirrus layer. The errors in the lidar ratio of an aerosol layer influence the retrievals of backscattering coefficients for the aerosol layer below it.
Keywords
Aerosol backscattering coefficient; Lidar ratio; Error analysis; Aerosol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Rocadenbosch, M. N. Reba, M. Sicard, and A. Comeron, "Practical analytical backscatter error bars for elastic one-component lidar inversion algorithm," Appl. Opt. 49, 3380 (2010).   DOI
2 M. Sicard, A. Comeron, F. Rocadenbosch, A. Rodriguez, and C. Munoz, "Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm," Appl. Opt. 48, 176-182 (2009).   DOI
3 A. H. Omar, D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Liu, Y. Hu, C. R. Trepte, R. R. Rogers, R. A. Ferrare, K. P. Lee, R. E. Kuehn, and C. A. Hostetler, "The CALIPSO automated aerosol classification and lidar ratio selection algorithm," J. Atmos. Ocean. Tech. 26, 1994-2014 (2009).   DOI
4 Z. Liu, N. Sugimoto, and T. Murayama, "Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar," Appl. Opt. 41, 2760 (2002).   DOI
5 C. Cordoba-Jabonero, I. Sabbah, M. Sorribas, J. A. Adame, E. Cuevas, F. A. Sharifi, and M. Gil-Ojeda, "Saharan and arabian dust aerosols: a comparative case study of lidar ratio," in Proc. European Physical Journal Web of Conferences (USA, Jun. 2016.) paper 08002.
6 W. N. Chen, C. W. Chiang, and J. B. Nee, "Lidar ratio and depolarization ratio for cirrus clouds," Appl. Opt. 41, 6470-6 (2002).   DOI
7 B. Veera, R. Anil, J. Mukesh, and R. C. Sharma, "Mie lidar observations of lower tropospheric aerosols and clouds," Spectrochim. Acta. A. 84, 32-36 (2011).   DOI
8 Z. Tao, Q. Zhang, K. Yuan, D. Wu, K. Cao, S. Hu, and H. Hu, "Retrieving aerosol backscattering coefficient for short range lidar using parameter selection at reference point," Chin. Opt. Lett. 8, 732-734 (2010).   DOI
9 T. Bangia, A. Kumar, R. Sagar, and S. K. Singh, "Development of Mie LIDAR system and initial cloud observations over Central Himalayan region," Sci. Res. Essays 6, 896-907 (2011).
10 G. Harish and A. Jayaraman, "Airborne lidar study of the vertical distribution of aerosols over Hyderabad, an urban site in central India, and its implication for radiative forcing calculations," Ann. Geophys. 24, 2461-2470 (2006).   DOI
11 X. Wang, M. G. Frontoso, G. Pisani, and N. Spinelli, "Retrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profiles," Opt. Express 15, 6734-6743 (2007).   DOI
12 Q. He, C. Li, J. Mao, and A. K. Lau, "A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong," Atmos. Chem. Phys. 6, 3099-3133 (2003).
13 D. Wu, J. Zhou, D. Liu, Z. Wang, Z. Zhong, C. Xie, F. Qi, A. Fan, and Y. Wang, "12-year LIDAR Observations of Tropospheric Aerosol over Hefei ($31.9^{\circ}N$, $117.2^{\circ}E$), China," J. Opt. Soc. Korea 15, 90-95 (2011).   DOI
14 X. Huang, X. Yang, F. Geng, H. Zhang, Q. He, and L. Bu, "Aerosol measurement and property analysis based on data collected by a micro-pulse LIDAR over Shanghai, China," J. Opt. Soc. Korea 14, 185-189 (2010).   DOI
15 F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652 (1984).   DOI