Browse > Article
http://dx.doi.org/10.3807/COPP.2018.2.1.085

Ultrahuge Light Intensity in the Gap Region of a Bowtie Nanoantenna Coupled to a Low-mode-volume Photonic-crystal Nanocavity  

Ebadi, Nassibeh (Department of Electrical and Computer Engineering, University of Tabriz)
Yadipour, Reza (Department of Electrical and Computer Engineering, University of Tabriz)
Baghban, Hamed (School of Engineering-Emerging Technologies, University of Tabriz)
Publication Information
Current Optics and Photonics / v.2, no.1, 2018 , pp. 85-89 More about this Journal
Abstract
This paper presents a new, efficient hybrid photonic-plasmonic structure. The proposed structure efficiently and with very high accuracy combines the resonant mode of a low-mode-volume photonic-crystal nanocavity with a bowtie nanoantenna's plasmonic resonance. The resulting enormous enhancement of light intensity of about $1.1{\times}10^7$ in the gap region of the bowtie nanoantenna, due to the effective optical-resonance combination, is realized by subtle optimization of the nanocavity's optical characteristics. This coupled structure holds great promise for many applications relying on strong confinement and enhancement of optical field in nanoscale volumes, including antennas (communication and information), optical trapping and manipulation, sensors, data storage, nonlinear optics, and lasers.
Keywords
Photonic crystal (PC); Nanocavity; Low mode volume; Bowtie nanoantenna (BA); Coupling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).   DOI
2 A. Alu and N. Engheta, "Hertzian plasmonic nanodimer as an efficient optical nanoantenna," Phys. Rev. B 78, 195111 (2008).   DOI
3 T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, "Plasmonic-photonic crystal coupled Nanolaser," Nanotechnol. 25, 315201 (2014).   DOI
4 A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, "3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nanoantenna," Opt. Express 18, A381-A394 (2010).   DOI
5 A. El Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, "Huge light-enhancement by coupling a bowtie nanoantenna's plasmonic resonance to a photonic crystal mode," Opt. Express 22, 14464-14472 (2014).   DOI
6 H. Pan, S. Assefa, W. M. J. Green, D. M. Kuchta, C. L. Schow, A. V. Rylyakov, B. G. Lee, C. W. Baks, S. M. Shank, and Y. A. Vlasov, "High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier," Opt. Express 20, 18145-18155 (2012).   DOI
7 D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005).   DOI
8 T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nat. 432, 200-203 (2004).   DOI
9 J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001).   DOI
10 S. Aneja and M. Kumar, "Design of a three-hole defect photonic crystal nanocavity with high-quality and enhanced Purcell factor," Opt. Eng. 54, 017106 (2015).   DOI
11 O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Optical scattering resonances of single and coupled dimmer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007).   DOI
12 L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).   DOI
13 W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nat. 424, 824-830 (2003).   DOI
14 H. Fischer and O. J. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008).   DOI
15 P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).   DOI
16 H. Miao, K. Srinivasan, and V. Aksyuk, "A microelectromechanically controlled cavity optomechanical sensing system," New J. Phys. 14, 075015 (2012).   DOI
17 Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, "Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million," Appl. Phys. Lett. 104, 241101 (2014).   DOI
18 R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, "Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters," Nat. Commun. 5, 5580 (2014).   DOI
19 U. P. Dharanipathy, M. Minkov, M. Tonin, V. Savona, and R. Houdre, "High-Q silicon photonic crystal cavity for enhanced optical nonlinearities," Appl. Phys. Lett. 105, 101101 (2014).   DOI
20 P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).   DOI
21 H. A, Atwater, and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater. 9, 205-213 (2010).   DOI
22 G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. Haller, and J. Vuckovic, "Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode," Nat. Commun. 2, 539 (2011).   DOI
23 M. Mivelle, P. Viktorovitch, F. I. Baida, A. El Eter, Z. Xie, T. P. Vo, E. Atie, G. W. Burr, D. Nedeljkovic, J. Y. Rauch, S. Callard, and T. Grosjean "Light funneling from a photonic crystal laser cavity to a nanoantenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale," Opt. Express 22, 15075-15087 (2014).   DOI
24 P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Sci. 308, 1607-1609 (2005).   DOI
25 R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997).   DOI
26 J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).   DOI