Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.6.649

Fully Analytic Approach to Evaluate Laser-induced Thermal Effects  

Kim, Myungsoo (Department of Mechanical Design Engineering, Youngsan University)
Kwon, Gyeong-Pil (Department of Science Education, Gyeongin National University of Education)
Lee, Jinho (The Research Institute of Natural Science and Department of Physics Education, Gyeongsang National University)
Publication Information
Current Optics and Photonics / v.1, no.6, 2017 , pp. 649-654 More about this Journal
Abstract
In this communication, we present an expression to determine thermal lensing in isotropic materials. The heat equation is analytically solved when a Gaussian spatial laser beam profile is introduced to a cylindrical geometry of optics using a complete set of Bessel functions. This expression permits explicit calculation of variation of focal length induced by thermal lensing and allows thermal effects for various material parameters on the optics. We applied our model to a high absorption material (Ti:sapphire) and also transparent material (thallium garnet or TGG) and found that the thermal lensing can be reduced more than 4 times by adjusting the laser beam waist and optics dimensions. Our analysis is completely general and applicable to any optical system.
Keywords
High power laser; Thermal lensing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor," Appl. Opt. 40, 366 (2001).   DOI
2 V. Quetschke, J. Gleason, M. Rakhmanov, J. Lee, L. Zhang, K. Y. Franzen, C. Leidel, G. Mueller, R. Amin, D. B. Tanner, and D. H. Reitze, "Adaptive control of laser modal properties," Opt. Lett. 31, 217 (2006).   DOI
3 Z. Liu, P. Fulda, M. A. Arain, L. Williams, G. Mueller, D. B. Tanner, and D. H. Reitze, "Feedback control of optical beam spatial profiles using thermal lensing," App. Opt. 52, 6452 (2013).
4 W. Koechner, Solid-state laser engineering (Springer-Verlag, 1998), Chapter 7.
5 V. Ramanathan, J. Lee, S. Xu, X. Wang, and D. H Reitze, "Analysis of thermal aberrations in a high average power single-stage Ti: sapphire regenerative chirped pulse amplifier: Simulation and experiment," Rev. Sci. Instrum. 77, 103103 (2006).   DOI
6 B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082 (1995).   DOI
7 G. Wagner, M. Shiler, and V. Wulfmeyer, "Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power," Opt. Express 13, 8045 (2005).   DOI
8 G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, "Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers," Classical Quantum Gravity 19, 1793 (2002).   DOI
9 M. Adier, F. Aguilar, and T. Akutsu et al., "Progress and challenges in advanced ground-based gravitational-wave detectors." Gen. Relativ. Gravitation 46, 1749 (2014).   DOI
10 E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermooptical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38, 1620 (2002).   DOI
11 M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, "Adaptive beam shaping by controlled thermal lensing in optical elements," Appl. Opt. 46, 2153 (2007).   DOI
12 R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, "Active correction of thermal lensing through external radiative thermal actuation," Opt. Lett. 22, 2635 (2004).
13 S. Sato, "Liquid-crystal lens-cell with variable focal length," Jpn. J. Appl. Phys. 18, 1679 (1979).   DOI
14 J. Moreau and V. Loriette, "Confocal thermal-lens microscope," Opt. Lett. 29, 1488 (2004).   DOI
15 J. Schwarz, M. Geissel, P. Rambo, J. Porter, D. Headley, and M. Ramsey, "Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers," Opt. Express 14, 10957 (2006).   DOI
16 K. Dobek, M. Baranowski, J. Karolczak, D. Komar, K. Kreczmer, and J. Szuniewicz, "Thermal lens in a liquid sample with focal length controllable by bulk temperature," Appl. Phys. B 122, 151 (2016).
17 T. A. Meyers, Encyclopedia of analytical chemistry (John Wiley & Sons Ltd 2010).
18 W. Koechner, "Thermal lensing in a Nd:YAG laser rod," Appl. Opt. 9, 2548 (1970).   DOI
19 U. O. Farrukh, A. M. Buoncristiani, and C. E. Byvik, "An analysis of the temperature distribution in finite solid-state laser rods," IEEE J. Quantum Electron. 24, 2253 (1998).
20 M. Innocenzi, H. Yura, C. Fincher, and R. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831 (1990).   DOI
21 A. Cousins, "Temperature and thermal stress scaling in finitelength end-pumped laser rods," IEEE J. Quantum Electron. 28, 1057 (1992).   DOI
22 M. Schmid, T. Graf, and H. P. Weber, "Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating," J. Opt. Soc. Am. B 17, 1398 (2000).   DOI
23 H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Oxford Univ. 1948).
24 J. Lee, and D. H. Reitze, "Analytic spatial and temporal temperature profile in a finite laser rod with input laser pulses," Opt. Express 23, 2591 (2015).   DOI
25 F. Kreitha and M. S. Bohn, Principle of heat transfer, 6th ed. (Brooks/Cole, CA, USA, 2001).
26 M. N. Ozisik, Boundary value problems of heat conduction (Dover Publications, INC 1968), pp. 457.
27 G. P. Kwon and J. Lee, "Self-adaptive thermal-lensing compensation for a high-power laser," J. Korean Phys. Soc. 69, 1531 (2016).   DOI
28 R. Lausten, and P. Balling, "Thermal lensing in pulsed laser amplifiers: an analytical model," J. Opt. Soc. Am. B 20, 1479 (2003).   DOI
29 A. H. Farhadian, H. Saghaffier, and M. Dehghanbaghi, "Calculation of thermal lensing in end-pumped $YVO_4$/ Nd:$YVO_4$ composite crystals in view of the temperature distribution," J. Russ Laser Res. 36, 350 (2015).   DOI
30 M. Sameti and A. Kasaeian, "Heat diffusion in an anisotropic medium with central heat source," Int. J. Partial Differ. Equations Appl. 2, 23 (2014).
31 S. Ito, H. Nagaoka, T. Kobayashi, A. Endo and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser," Appl. Phys. B 74, 343 (2002).   DOI