Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.4.412

Label-free Noninvasive Characterization of Osteoclast Differentiation Using Raman Spectroscopy Coupled with Multivariate Analysis  

Jung, Gyeong Bok (Department of Physics Education, Chosun University)
Kang, In Soon (Department of Pharmacology, Inha University School of Medicine)
Lee, Young Ju (Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University)
Kim, Dohyun (Department of Industrial and Management Engineering, Myongji University)
Park, Hun-Kuk (Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University)
Lee, Gi-Ja (Department of Biomedical Engineering & Healthcare Industry Research Institute, College of Medicine, Kyung Hee University)
Kim, Chaekyun (Department of Pharmacology, Inha University School of Medicine)
Publication Information
Current Optics and Photonics / v.1, no.4, 2017 , pp. 412-420 More about this Journal
Abstract
Multinucleated bone resorptive osteoclasts differentiate from bone marrow-derived monocyte/macrophage precursor cells. During osteoclast differentiation, mononuclear pre-osteoclasts change their morphology and biochemical characteristics. In this study, Raman spectroscopy with multivariate techniques such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were used to extract biochemical information related to various cellular events during osteoclastogenesis. This technique allowed for label-free and noninvasive monitoring of differentiating cells, and clearly discriminated four different time points during osteoclast differentiation. The Raman band intensity showed significant time-dependent changes that increased up to day 4. The results of Raman spectroscopy agreed with results from atomic force microscopy (AFM) and tartrate-resistant acid phosphatase (TRAP) staining, a conventional biological assay. Under AFM, normal spindle-like mononuclear pre-osteoclasts became round and smaller at day 2 after treatment with a receptor activator of nuclear $factor-{\kappa}B$ ligand and they formed multinucleated giant cells at day 4. Thus, Raman spectroscopy, in combination with PCA-LDA, may be useful for noninvasive label-free quality assessment of cell status during osteoclast differentiation, enabling more efficient optimization of the bioprocesses.
Keywords
Osteoclast; Differentiation; Atomic force microscopy; Raman spectroscopy; Multivariate analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. L. McManus, G. A. Burke, M. M. McCafferty, P. O'Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, "Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells," Analyst 136, 2471-2481 (2011).   DOI
2 I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. Polak, and L. L. Hench, "In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro," Anal. Chem. 76, 3185-3193 (2004).   DOI
3 H. G. Schulze, S. O. Konorov, N. J. Caron, J. M. Piret, M. W. Blades, and R. F. B. Turner, "Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy," Anal. Chem. 82, 5020-5027 (2010).   DOI
4 F. C. Pascut, T. G. Huey, N. Welch, L. D. Buttery, C. Denning, and I. Notingher, "Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells," Biophys. J. 100, 251-259 (2011).   DOI
5 S. O. Konorov, G. Schulze, J. M. Piret, R. F. B. Turner, and M. W. Blades, "Evidence of marked glycogen variations in the characteristic Raman signatures of human embryonic stem cells," J. Raman Spectrosc. 42, 1135-1141 (2011).   DOI
6 P. S. Hung, Y. C. Kuo, H. G. Chen, H. H. K. Chiang, and O. K. S. Lee, "Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy," PLOS ONE 8, e65438 (2013).   DOI
7 M. Xu, D. Fujita, K. Onishi, and K. Miyazawa, "Improving accuracy of sample surface topography by atomic force microscopy," J. Nanosci. Nanotechnol. 9, 6003-6007 (2009).   DOI
8 G. J. Lee, S. Choi, J. Chon, S. Yoo, I. Cho, and H. K. Park, "Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM," J. Nanosci. Nanotechnol. 11, 773-777 (2011).   DOI
9 G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Phys. Rev. Lett. 56, 930-933 (1986).   DOI
10 W. A. Lam, M. J. Rosenbluth, and D. A. Fletcher, "Chemotherapy exposure increases leukemia cell stiffness," Blood 109, 3505-3508 (2007).   DOI
11 S. S. Schaus and E. R. Henderson, "Cell viability and probecell membrane interactions of XR1 glial cells imaged by atomic force microscopy," Biophys. J. 73, 1205-1214 (1997).   DOI
12 J. K. Pijanka, K. Kumar, T. Dale, I. Yousef, G. Parkes, V. Untereiner, Y. Yang, P. Dumas, D. Collins, M. Manfait, G. D. Sockalingum, N. R. Forsyth, and J. Sule-Suso, "Vibrational spectroscopy differentiates between multipotent and pluripotent stem cells," Analyst 135, 3126-3132 (2010).   DOI
13 J. A. Hessler, A. Budor, K. Putchakayala, A. Mecke, D. Rieger, M. M. Banaszak Holl, B. G. Orr, A. Bielinska, J. Beals, and J. J. Baker, "Atomic force microscopy study of early morphological changes during apoptosis," Langmuir 21, 9280-9286 (2005).   DOI
14 E. Gazi, J. Dwyer, N. P. Lockyer, J. Miyan, P. Gardner, C. Hart, M. Brown, and N. W. Clarke, "Fixation protocols for subcellular imaging by synchrotron-based Fourier transform infrared microspectroscopy," Biopolymers 77, 18-30 (2005).   DOI
15 A. D. Meade, F. M. Lyng, P. Knief, and H. J. Byme, "Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in-vitro cultured human keratinocytes," Anal. Bional. Chem. 387, 1717-1728 (2007).   DOI
16 M. Q. Hu, J. Wang, J. Y. Cai, Y. Z. Wu, and X. P. Wang, "Analysis of sodium benzoate biotoxicity using atomic force microscope," Chin. J. Biotechnol. 24, 1428-1432 (2008).   DOI
17 D. J. Taatjes, B. E. Sobel, and R. C. Budd, "Morphological and cytochemical determination of cell death by apoptosis," Histochem. Cell. Biol. 129, 33-43 (2008).   DOI
18 G. B. Jung, Y. J. Lee, G. H. Lee, and H. K. Park, "A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy," Opt. Express 4, 2673-2682 (2013).   DOI
19 Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, "Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture confluency," Appl. Spectrosc. 64, 871-887 (2010).   DOI
20 J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, "Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells," Biophys. J. 90, 648-656 (2006).   DOI
21 F. Arai, T. Miyamoto, O. Ohneda, T. Inada, T. Sudo, K. Brasel, T. Miyata, D. M. Anderson, and T. Suda, "Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors," J. Exp. Med. 190, 1741-1754 (1999).   DOI
22 H. M. Al-Qadin, M. Lin, M. A. Al-Holy, A. G. Cavinato, and B. A. Rasco, "Detection of sublethal thermal injury in Salmonella enterica serotype typhimurium and Listeria monocytogenes using Fourier transform infrared (FT-IR) spectroscopy (4000 to 600 $cm^{-1}$)," J. Food. Sci. 73, M54-61 (2008).   DOI
23 I. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells," J. Mol. Struct. 744-747, 179-185 (2005).   DOI
24 C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).
25 G. A. Rodan and T. J. Martin, "Therapeutic approaches to bone diseases," Science 289, 1508-1514 (2000).   DOI
26 W. J. Boyle, W. S. Simonet, and D. L. Lacey, "Osteoclast differentiation and activation," Nature 423, 337-342 (2003).   DOI
27 T. Wada, T. Nakashima, N. Hiroshi, and J. M. Penninger, "RANKL-RANK signaling in osteoclastogenesis and bone disease," Trends. Mol. Med. 12, 17-25 (2006).   DOI
28 G. D. Roodman, K. J. Ibbotson, B. R. MacKonald, T. J. Kuehl, and G. R. Mundy, "1,25-Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow," Proc. Natl. Acad. Sci. USA. 82, 8213-8217 (1985).   DOI
29 S. L. Teitelbaum, "Bone resorption by osteoclasts," Science 289, 1504-1508 (2000).   DOI
30 B. R. Wong, R. Josien, and Y. Choi, "TRANCE is a TNF family member that regulates dendritic cell and osteoclast function," J. Leukoc. Biol. 65, 715-724 (1999).   DOI
31 M. M. Mariani, P. J. Day, and V. Deckert, "Applications of modern micro-Raman spectroscopy for cell analyses," Integr. Biol. 2, 94-101 (2010).   DOI
32 N. J. Panetta, D. M. Gupta, N. Quarto, and M. T. Longaker, "Mesenchymal cells for skeletal tissue engineering," Panminerva Medica. 51, 25-41 (2009).
33 M. T. Cheng, H. W. Yang, T. H. Chen, and O. K. S. Lee, "Modulation of proliferation and differentiation of human anterior cruciate ligament-derived stem cells by different growth factors," Tissue Engineering Part A. 15, 3979-3989 (2009).   DOI
34 Y. R. V. Shih, C. N. Chen, S. W. Tsai, Y. J. Wang, and O. K. Lee, "Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells," 24, 2391-2397 (2006).   DOI
35 J. Alock and V. Sottile, "Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex," Cell Res. 19, 1324-1333 (2009).   DOI
36 J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, and Z. Huang, "Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection," J. Raman Spectrosc. 43, 497-502 (2012).   DOI
37 S. Dochow, C. Kra, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, "Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments," Lab Chip. 11, 1484-1490 (2011).   DOI
38 W. A. El-Said, T. H. Kim, H. C. Kim, and J. W. Choi, "Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering," PLOS ONE 6, e15836 (2011).   DOI
39 J. Lin, R. Chen, S. Feng, J. Pan, Y. Li, G. Chen, M. Cheng, Z. Huang, Y. Yu, and H. Zeng, "A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection," Nanomedicine 7, 655-663 (2011).   DOI
40 S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, "Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light," Biosens. Bioelectron. 26, 3167-3174 (2011).   DOI
41 I. Notingher, J. Selvakumaran, and L. L. Hench, "New detection system for toxic agents based on continuous spectroscopic monitoring of living cells," Biosens. Bioelectron. 20, 780-789 (2004).   DOI