Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.4.402

A Novel Classification of Polymorphs Using Combined LIBS and Raman Spectroscopy  

Han, Dongwoo (Department of Mechanical and Aerospace Engineering, Seoul National University)
Kim, Daehyoung (Department of Mechanical and Aerospace Engineering, Seoul National University)
Choi, Soojin (Department of Mechanical and Aerospace Engineering, Seoul National University)
Yoh, Jack J. (Department of Mechanical and Aerospace Engineering, Seoul National University)
Publication Information
Current Optics and Photonics / v.1, no.4, 2017 , pp. 402-411 More about this Journal
Abstract
Combined LIBS-Raman spectroscopy has been widely studied, due to its complementary capabilities as an elemental analyzer that can acquire signals of atoms, ions, and molecules. In this study, the classification of polymorphs was performed by laser-induced breakdown spectroscopy (LIBS) to overcome the limitation in molecular analysis; the results were verified by Raman spectroscopy. LIBS signals of the $CaCO_3$ polymorphs calcite and aragonite, and $CaSO_4{\cdot}2H_2O$ (gypsum) and $CaSO_4$ (anhydrite), were acquired using a Nd:YAG laser (532 nm, 6 ns). While the molecular study was performed using Raman spectroscopy, LIBS could also provide sufficient key data for classifying samples containing different molecular densities and structures, using the peculiar signal ratio of $5s{\rightarrow}4p$ for the orbital transition of two polymorphs that contain Ca. The basic principle was analyzed by electronic motion in plasma and electronic transition in atoms or ions. The key factors for the classification of polymorphs were the different electron quantities in the unit-cell volume of each sample, and the selection rule in electric-dipole transitions. The present work has extended the capabilities of LIBS in molecular analysis, as well as in atomic and ionic analysis.
Keywords
Laser-induced breakdown spectroscopy (LIBS); Raman spectroscopy; Polymorphs; Orbital transition; Selection rule;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Prieto-Taboada, O. Gomez-Laserna, I. Martínez-Arkarazo, M. A. Olazabal, and J. M. Madariaga, "Raman spectra of the different phases in the $CaSO_4-H_2O$ system," Anal. Chem. 86(20), 10131-10137 (2014).   DOI
2 M. D. Dyar, E. Breves, E. Jawin, G. Marchand, M. Nelms, V. O'Connor, S. Peel, Y. Rothstein, E. C. Sklute, and M. D. Lane, "What lurks in the martian rocks and soil? investigations of sulfates, phosphates, and perchlorates. Mössbauer parameters of iron in sulfate minerals," Am. Mineral. 98(11-12), 1943-1965 (2013).   DOI
3 K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, and D. Anglos, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
4 F. C. D. Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, "Laser-induced breakdown spectroscopy analysis of energetic materials," Appl. Opt. 42(30), 6148-6152 (2003).   DOI
5 A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, "Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for application to space exploration," Appl. Spectrosc. 54(3), 331-340 (2000).   DOI
6 F. Rull, J. Martinez-Frias, A. Sansano, J. Medina, and H. G. M. Edwards, "Comparative micro-Raman study of the Nakhla and Vaca Muerta meteorites," J. Raman Spectrosc. 35(6), 497-503 (2004).   DOI
7 R. Bruder, V. Detalle, and C. Coupry, "An example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysis," J. Raman Spectrosc. 38(7), 909-915 (2007).   DOI
8 A. Wang, J. J. Freeman, B. L. Jolliff, and I.-M. Chou, "Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates," Geochim. Cosmochim. Acta 70(24), 6118-6135 (2006).   DOI
9 R. J. Hemley, "Pressure dependence of Raman spectra of $SiO_2$ Polymorphs: ${\alpha}$-quartz, coesite, and stishovite," High-Pressure Res. Miner. Phys. 347 (1987).
10 M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, "A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis," Spectrochim. Acta Part B: At. Spectrosc. 64(11), 1219-1227 (2009).   DOI
11 A. Giakoumaki, I. Osticioli, and D. Anglos, "Spectroscopic analysis using a hybrid LIBS-Raman system," Appl. Phys. A 83(4), 537-541 (2006).   DOI
12 J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, J. J. Laserna, "Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform," Anal. Chem. 82(4), 1389-1400 (2010).   DOI
13 B Emmoth, M. Braun, J. Bromander, and I. Martinson, "Lifetimes of excited levels in Ca I - Ca III," Phys. Scr. 12(1-2), 75-79 (1975).   DOI
14 J. Moros, J. A. Lorenzo, and J. J. Laserna, "Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion," Anal. Bioanal. Chem. 400(10), 3353-3365 (2011).   DOI
15 S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. Clegg, "Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust," Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 68(4), 1036-1045 (2007).   DOI
16 G. B. Courreges-Lacoste, B. Ahlers, and F. R. Perez, "Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars," Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 68(4), 1023-1028 (2007).   DOI
17 A. Frebel, J. E. Norris, W. Aoki, S. Honda, M. S. Bessell, M. Takada-Hidai, T. C. Beers, and N. Christlieb, "Chemical abundance analysis of the extremely metal-poor star HE 1300 + 0157," Astrophys. J. 658(1), 534-552 (2007).   DOI
18 R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. Francois, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbuy, P. Bonifacio, P. Molaro, and B. Nordstrom, "First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy," Astron. Astrophys. 416(3), 1117-1138 (2004).   DOI
19 J. E. Stalnaker, Y. L. Coq, T. M. Fortier, S. A. Diddams, C. W. Oates, and L. Hollberg, "Measurement of excitedstate transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopy," Phys. Rev. A 75(4), 040502 (2007).   DOI
20 L. Pasternack, D. R. Yarkony, P. J. Dagdigian, and D. M. Silver, "Experimental and theoretical study of the Ca I 4s3d $^1D-4s2\;^1S$ and 4s4p $^3P1-4s^2$ 1S forbidden transitions," J. Phys. B: At. Mol. Phys. 13(11), 2231-2241 (1980).   DOI
21 David Barthelmy (http://webmineral.com/, (1997-2014).
22 N. H. D. Leeuw and S. C. Parker, "Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach," J. Phys. Chem. B 102 (16), 2914-2922 (1998).   DOI
23 A. Pavese, M. Catti, G. D. Price, and R. A. Jackson, "Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data," Phys. Chem. of Miner. 19(2), 80-87 (1992).   DOI
24 B. Xu and K. M. Poduska, "Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals," Phys. Chem. Chem. Phys. 16(33), 17634-17639 (2014).   DOI
25 Hudson Institute of Mineralogy (http://www.mindat.org/), (1993-2015).
26 The University of Liverpool (http://www.chemtube3d.com/solidstate/SS-CaCO3.htm), (2008-2015).
27 J. Liu, M. M. Ossowski, J. R. Hardy, C. Duan, and W. N. Mei, "Simulation of structural transformation in aragonite $CaCO_3$," AIP Conference Proceedings, 2000.
28 F. M. Hossain, G. E. Murch, I. V. Belova, and B. D. Turner, "Electronic, optical and bonding properties of $CaCO_3$ calcite," Solid State Commun. 149(29), 1201-1203 (2009).   DOI
29 J. Peric, M. Vucak, R. Krstulovic, L. Brecevic, and D. Kralj, "Phase transformation of calcium carbonate polymorphs," Thermochim. Acta 277, 175-186 (1996).   DOI
30 NIST (http://physics.nist.gov/PhysRefData/Handbook/Tables/calciumtable5.htm), (2010-2015).
31 G. Azimi and V. G. Papangelakis, "Mechanism and kinetics of gypsum-anhydrite transformation in aqueous electrolyte solutions," Hydrometallurgy 108(1), 122-129 (2011).   DOI
32 E. S. A. Seif, "Geotechnical characteristics of anhydrite/gypsum transformation in the middle miocene evaporites, red sea coast, Egypt," Arabian J. Sci. Eng. 39(1), 247-260 (2014).   DOI