Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.4.372

Effects of Organic Thin Films on Local Resonance of Metamaterials under Photoexcitation  

Song, Myeong-Seong (Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University)
Hwang, In-Wook (Advanced Photonics Research Institute, GIST)
Lee, Chang-Lyoul (Advanced Photonics Research Institute, GIST)
Kang, Chul (Advanced Photonics Research Institute, GIST)
Kee, Chul-Sik (Advanced Photonics Research Institute, GIST)
Park, Sae June (Department of Physics and Department of Energy Systems Research, Ajou University)
Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University)
Park, Doo Jae (Department of Physics, Hallym University)
Lee, Joong Wook (Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University)
Publication Information
Current Optics and Photonics / v.1, no.4, 2017 , pp. 372-377 More about this Journal
Abstract
We demonstrate that the local resonance of metamaterials can be tuned by the effects of organic thin films under photoexcitation. Tris (8-hydroxyquinolinato) aluminum ($Alq_3$) layers are deposited on metamaterial/silicon hybrid structures. By varying the thickness of the $Alq_3$ layer on the subwavelength scale, the resonant peak of the metamaterial becomes very adjustable, due to the effect of a thin dielectric substrate. In addition, under photoexcitation all the spectral peaks of the resonance shift to higher frequencies. This originates from the reduction of the capacitive response generated inside the gaps of split-ring resonators. The adjustability of the electromagnetic spectrum may be useful for developing optical systems requiring refractive-index engineering and active optical devices.
Keywords
Organic materials; Modulators; Terahertz spectroscopy; Metamaterials; Optical devices;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. J. Park, M. S. Jeong, and S. B. Choi, "Effect of a dielectric substrate with a subwavelength thickness of light diffraction by rectangular hole arrays on metallic film," J. Kor. Phys. Soc. 65, 1390-1398 (2014).   DOI
2 S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC. Adv. 6, 69381-69386 (2016).   DOI
3 A. Lukyanov and D. Andrienko, "Extracting nondispersive charge carrier mobilities of organic semiconductors from simulation of small systems," Phys. Rev. B 82, 193202 (2010).   DOI
4 M. M. El-Nahass, A. M. Farid, and A. A. Atta, "Structural and optical properties of Tris (8-hydroxyquinoline) aluminum (III) ($Alq_3$) thermal evaporated thin films," J. All. Com. 507, 112-119 (2010).   DOI
5 M. van Exter and D. Grischkowsky, "Optical and electric properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990).   DOI
6 Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000).   DOI
7 J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, "Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics," Opt. Eng. 51(11), 119002 (2012).   DOI
8 C. G. Hu, M. B. Pu, X. Li, M. Wang, Q. Feng, and X. G. Luo, "Extraordinary optical transmission induced by electric resonance ring and its dynamic manipulation at far-infrared regime," Opt. Express 19, 18109-18115 (2011).   DOI
9 R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, "Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates," Opt. Lett. 36, 1230-1232 (2011).   DOI
10 Y. Yang, R. Huang, L. Cong, Z. Zhu, J. Gu, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, "Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials," Appl. Phys. Lett. 98, 121114 (2011).   DOI
11 Y. S. Lee, "Principles of terahertz science and technology," Springer, New York (2009).
12 M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).   DOI
13 D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999).   DOI
14 B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Mater. 1, 26-33 (2002).   DOI
15 H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005).   DOI
16 J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, C. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253 (2006).   DOI
17 W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006).   DOI
18 J. N. Heyman, R. Kersting, and K. Unterrainer, "Time-domain measurement of intersubband oscillations in a quantum well," Appl. Phys. Lett. 72, 644-646 (1998).   DOI
19 I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 76, 2821-2823 (2000).   DOI
20 T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004).   DOI
21 H.-T.Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).   DOI
22 E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, "Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays," Phys. Rev. B 75, 235305 (2007).   DOI
23 P. H. Siegel, "Terahertz technology," IEEE Trans. Microw. Theory. Tech. 50, 910-928 (2002).   DOI
24 E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gomez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture," Phys. Rev. Lett. 100, 123901 (2008).   DOI
25 H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor "A metamaterial solid-state terahertz phase modulator," Nat. Photonics 3, 148-151 (2009).   DOI
26 H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, "Organic conjugated material-based broadband terahertz wave modulators," Appl. Phys. Lett. 99, 061108 (2011).   DOI
27 H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, "Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers," Appl. Phys. Lett. 105, 011115 (2014).   DOI
28 D. G. Cooke and P. U. Jepsen, "Optical modulation of terahertz pulses in a parallel plate waveguide," Opt. Express 16, 15123-15129 (2008).   DOI
29 H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, Z. Zhang, R. D. Averitt, and F. G. Omenetto, "Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications," Appl. Phys. Lett. 97, 261909 (2010).   DOI
30 M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature 487, 345-348 (2012).   DOI
31 Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, "Parallel laser microfabrication of largearea asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance," Appl. Phys. Lett. 96, 181101 (2010).   DOI