Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.4.325

Joint Transmission Slot Assignment, FSO Links Allocation and Power Control for Hybrid RF/FSO Wireless Mesh Networks  

Zhao, Yan (College of Communication Engineering, Jilin University)
Shi, Wenxiao (College of Communication Engineering, Jilin University)
Shi, Hanyang (College of Communication Engineering, Jilin University)
Liu, Wei (College of Communication Engineering, Jilin University)
Wu, Pengxia (College of Communication Engineering, Jilin University)
Publication Information
Current Optics and Photonics / v.1, no.4, 2017 , pp. 325-335 More about this Journal
Abstract
Hybrid radio frequency/free space optical (RF/FSO) wireless mesh networks have attracted increasing attention for they can overcome the limitations of RF and FSO communications and significantly increase the throughput of wireless mesh networks (WMNs). In this article, a resource assignment optimization scheme is proposed for hybrid RF/FSO wireless mesh networks. The optimization framework is proposed for the objective of maximizing throughput of overall hybrid networks through joint transmission slot assignment, FSO links allocation and power control with the consideration of the fading nature of RF and FSO links. The scheme is formulated as an instance of mixed integer linear program (MILP) and the optimal solutions are provided using CPLEX and Gurobi optimizers. How to choose the appropriate optimizer is discussed by comparing their performance. Numerous simulations are done to demonstrate that the performance of our optimization scheme is much better than the current case of having the same topology.
Keywords
Hybrid RF/FSO networks; Mixed integer linear program; Transmission slot assignment; FSO links allocation; Power control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M. S. Alouini, "Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems," IEEE Wireless Commun. 22(5), 98-104 (2015).   DOI
2 A. G. Sarigiannidis, M. Iloridou, P. Nicopolitidis, G. Papadimitriou, F.-N. Pavlidou, P. G. Sarigiannidis, M. D. Louta, and V. Vitsas, "Architectures and bandwidth allocation schemes for hybrid wireless-optical networks," IEEE Commun. Surveys Tuts. 17(1), 427-468 (2015).   DOI
3 K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, "Impact of interference on multi-hop wireless network performance," Wireless Netw. 11, 471-487 (2005).   DOI
4 J. Luo, C. Rosenberg, and A. Girard, "Engineering wireless mesh networks: joint scheduling, routing, power control, and rate adaptation," IEEE/ACM Trans. Netw. 18, 1387-1400 (2010).   DOI
5 Y. Tang, M. B. Pearce, and S. G. Wilson, "Link adaptation for throughput optimization of parallel channels with application to hybrid FSO/RF systems," IEEE Trans. Commun. 60, 2723-2732 (2012).   DOI
6 F. Yang, J. L. Cheng, and T. A. Tsiftsis, "Free-space optical communication with nonzero boresight pointing errors," IEEE Trans. Commun. 62, 713-725 (2014).   DOI
7 F. Ahdi and S. Subramaniam, "Optimal placement of FSO links in hybrid wireless optical networks," in IEEE Global Telecommun. Conf. (GLOBECOM) 263, 1-6 (2011).
8 Y. Tang and M. B. Pearce, "Link allocation, routing and scheduling for hybrid FSO/RF wireless mesh networks," J. Opt. Commun. Netw. 6, 86-95 (2014).   DOI
9 M. N. Smadi, S. C. Ghosh, A. A. Farid, T. D. Todd, and S. Hranilovic, "Free-space optical gateway placement in hybrid wireless mesh networks," J. Lightwave Technol. 27, 2688-2697 (2009).   DOI
10 O. Awwad, A. A. Fuqaha, B. Khan, and G. B. Brahim, "Topology control schema for better QoS in hybrid RF/FSO mesh networks," IEEE Trans. Commun. 60, 1398-1406 (2012).   DOI
11 V. Rajakumar, M. N. Smadi, S. C. Ghosh, T. D. Todd, and S. Hranilovic, "Interference management in WLAN mesh networks using free-space optical links," J. Lightwave Technol. 26, 1735-1743 (2008).
12 D. Wang and A. A. Abouzeid, "Throughput capacity of hybrid radio-frequency and Free-Space-Optical (RF/FSO) multi-hop networks," in Information Theory and Applications Workshop, 3-10 (2007).
13 A. Kashyap and M. Shayman, "Routing and traffic engineering in hybrid RF/FSO networks," in IEEE Int. Conf. on Commun. (ICC) 5, 3427-3433 (2005).
14 A. Kashyap, A. Rawat, and M. Shayman, "Integrated backup topology control and routing of obscured traffic in hybrid RF/FSO networks," in Proc. IEEE Global Telecommun. Conf. (GLOBECOM) 1-6 (2006).
15 S. Enayati, H. Saeediand, and N. Mokari, "Throughput maximization in hybrid FSO/RF communication systems," in Int. Workshop on Opt. Wireless Commun. (IWOW) 51-54 (2015).
16 Y. Wang, F. Du, J. Ma, and L. Y. Tan, "Employing circle polarization shift keying in free space optical communication with gamma-gamma atmospheric turbulence channel," Opt. Commun. 333, 167-174 (2014).   DOI
17 D. Matic, "A mixed integer linear programming model and variable neighborhood search for maximally balanced connected partition problem," Appl. Math. Comput. 237, 85-97 (2014).   DOI
18 A. Sifaleras, L. Konstantaras, and N. Mladenovic, "Variable neighborhood search for the economic lot sizing problem with product returns and recovery," Int. J. prod. Econ. 160, 133-143 (2015).   DOI
19 C. Liu, Y. Yao, Y. X. Sun, and X. H. Zhao, "Analysis of average capacity for free-space optical links with pointing errors over gamma-gamma turbulence channels," Chinese Opt. Lett. 8, 537-540(2010).   DOI
20 H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, "Average capacity of optical wireless communication systems over atmospheric turbulence channels," J. Lightwave Technol. 27, 974-979 (2009).   DOI
21 M. A. A. Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562(2001).   DOI
22 T. Rakia, H. C. Yang, M. S. Alouini, and F. Gebali, "Outage analysis of practical FSO/RF hybrid system with adaptive combining," IEEE Commun. Lett. 19(8), 1366-1369 (2015).   DOI
23 T. A. Tsiftsis, "Performance of heterodyne wireless optical communications systems over gamma-gamma atmospheric turbulence channels," Electron. Lett. 44, 373-375 (2008).   DOI
24 F. Yang and J. Cheng, "Coherent free-space optical communications in lognormal-Rician turbulence," IEEE Commun. Lett. 16, 1872-1875 (2012).   DOI
25 W. Gappmair, S. Hranilovic, and E. Leitgeb, "OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions," IEEE Commun. Lett. 15, 875-877 (2011).   DOI