Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.3.239

Design of a Plasmonic Switch Using Ultrathin Chalcogenide Phase-change Material  

Lee, Seung-Yeol (Integrated plasmonics and optical device laboratory, Kyungpook National University)
Publication Information
Current Optics and Photonics / v.1, no.3, 2017 , pp. 239-246 More about this Journal
Abstract
A compact plasmonic switching scheme, based on the phase change of a thin-film chalcogenide material ($Ge_2Sb_2Te_5$), is proposed and numerically investigated at optical-communication wavelengths. Surface plasmon polariton modal analysis is conducted for various thicknesses of dielectric and phase-change material layers, and the optimized condition is induced by finding the region of interest that shows a high extinction ratio of surface plasmon polariton modes before and after the phase transition. Full electromagnetic simulations show that multiple reflections inside the active region may conditionally increase the overall efficiency of the on/off ratio at a specific length of the active region. However, it is shown that the optimized geometrical condition, which shows generally large on/off ratio for any length of active region, can be distinguished by observing the multiple-reflection characteristic inside the active region. The proposed scheme shows an on/off switching ratio greater than 30 dB for a length of a few micrometers, which can be potentially applied to integrated active plasmonic systems.
Keywords
Surface plasmon polariton; Phase change material; Optical modulator; Fourier modal analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-Y. Lee, J. Park, M. Kang, and B. Lee, "Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides," Opt. Express 19, 9562-9574 (2011).   DOI
2 S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).   DOI
3 M. Z. Alam, J. Niklas Caspers, J. S. Aitchison, and M. Mojahedi, "Compact low loss and broadband hybrid plasmonic directional coupler," Opt. Express 21, 16029-16034 (2013).   DOI
4 R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, "A nonvolatile plasmonic switch employing photochromic molecules," Nano Lett. 8, 1506-1510 (2008).   DOI
5 J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, "Polarization-controlled tunable directional coupling of surface plasmon polaritons," Science 340, 331-334 (2013).   DOI
6 S.-Y. Lee, K. Kim, S.-J. Kim, H. Park, K.-Y. Kim, and B. Lee, "Plasmonic meta-slit: shaping and controlling near-field focus," Optica 2, 6-13 (2015).   DOI
7 R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal1, and X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009).   DOI
8 S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, "Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap," Appl. Phys. Lett. 97, 133113 (2010).   DOI
9 T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, "Ultrafast plasmonic nanowire lasers near the surface plasmon frequency," Nature Physics 10, 870-876 (2014).   DOI
10 K.F. MacDonald and N.I. Zheludev, "Active plasmonics: current status," Laser Photon. Rev. 4, 562-567 (2010).
11 K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, "Ultrafast active plasmonics," Nat. Photon. 3, 55-58 (2009).   DOI
12 A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, "Active control of surface plasmon-polariton waves," J. Opt. A: Pure Appl. Opt. 7, S85-S89 (2005).   DOI
13 S. Roh, T. Chung, and B. Lee, "Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors," Sensors 11, 1565-1588 (2011).   DOI
14 D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photon. 1, 402-406 (2007).   DOI
15 Y. W. Huang, H. W. Lee, R. Sokhoyan, K. Thyagarajan, R. Pala, S. Han, D. P. Tsai, and H. A. Atwater, "Gate-tunable conducting oxide metasurfaces," Nano Lett. 16, 5319-5325 (2016).   DOI
16 H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, "Nanoscale conducting oxide plasMOStor," Nano Lett. 14, 6463-6468 (2014).   DOI
17 M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q-H. Park, K. Ahn, and D.-S. Kim, "Active terahertz nano-antennas based on VO2 phase transition," Nano Lett. 10, 2064-2068 (2010).   DOI
18 K. Appavoo and R. F. Haglund, "Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial," Nano Lett. 11, 1025-1031 (2011).   DOI
19 P. Hosseini, C. D. Wright, and H. Bhaskaran, "An optoelectronic framework enabled by low-dimensional phase-change film," Nature 511, 206-211 (2014).   DOI
20 A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phase-change mechanism of rewritable optical media," Nat. Material 3, 703-708 (2004).   DOI
21 Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, "Optically reconfigurable metasurfaces and photonic devices based on phase change materials," Nat. Photon. 10, 60-65 (2016).   DOI
22 A. Tittl, A. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, "A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability," Advanced Material 27, 4597-4603 (2015).   DOI
23 C. Rios, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. HP. Pernice, "Integrated all-photonic non-volatile multi-level memory," Nature Photon. 9, 725-733 (2015).   DOI
24 B. Ma, P. Zhang, H. Wang, T. Zhang, J. Zeng, Q. Zhang, G. Wang, P. Xu, W. Zhang, and S. Dai, "Photonic-crystal switch divider based on $Ge_2Sb_2Te_5$ thin films," Appl. Opt. 55, 9205-9210 (2016).   DOI
25 S.-Y. Lee, Y.-H. Kim, S.-M Cho, G. H. Kim, T.-Y. Kim, H. Ryu, H. N. Kim, H. B. Kang, C.-Y. Hwang, and C.-S. Hwang, "Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material," Sci. Rep. doi: 10.1038/srep41152 (2017).   DOI
26 H. Kim, J. Park, and B. Lee, Fourier modal method and its application in computational nanophotonics, (CRC Press, New York, 2012).
27 C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y.-H. Chen, H.-C. Wang, T.-Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, "Active dielectric metasurface based on phase-change medium," Laser Photon. Rev. doi: 10.1002/lpor.201600106 (2016).   DOI
28 J.-W. Park, S. H. Eom, H. Lee, J. L. F. Da Silva, Y.-S. Kang, T.-Y. Lee, and Y. H. Khan, "Optical properties of pseudo binary GeTe, $Ge_2Sb_2Te_5,\,GeSb_2Te_4,\,GeSb_4Te_7,\,and\,Sb_2Te_3$ from ellipsometry and density functional theory," Phys. Rev. B 80, 115209 (2009).   DOI
29 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1991).
30 H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007).   DOI
31 S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, "Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons," Phys. Rev. Lett. 108, article 213907 (2012).
32 S. Roh, T. Chung, and B. Lee, "Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors," Sensors 11, 1565-1588 (2011).   DOI
33 B. Lee, S. Kim, H. Kim, and Y. Lim, "The use of plasmonics in light beaming and focusing," Prog. Quant. Electron. 34, 47-87 (2010).   DOI
34 J. Park, K.-Y. Kim, I.-M. Lee, and B. Lee, "Complete tunneling through the surface mode in a metal-insulator-metal waveguide," J. Korean Phys. Soc. 66, 929-934 (2015).   DOI
35 W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).   DOI
36 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).   DOI