Browse > Article
http://dx.doi.org/10.3807/KJOP.2020.31.1.020

Aberration Correction of an Off-axial-field Two-mirror System Using a Decentered Aperture  

Lee, Jong-Ung (Department of Laser and Optical Information Engineering, Cheongju University)
Publication Information
Korean Journal of Optics and Photonics / v.31, no.1, 2020 , pp. 20-25 More about this Journal
Abstract
To design a wide-field two-mirror system, the system must feature an off-axial field, to avoid ray obstruction and field screening by the secondary mirror. The off-axial aberrations of the system cannot be corrected sufficiently, though, because there are only a few design parameters. The present study designs an improved off-axial-field two-mirror system using a decentered aperture stop.
Keywords
Optical system design; Two-mirror system; Off-axial field; Decentered stop;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 H. Gross, F. Blechinger, and B. Achtner, "Telescopes," in Handbook of Optical Systems: Survey of Optical Instruments, (Wiley-VCH, Weinheim, 2008), Vol. 4, Chapter 43, pp. 723-864.
2 J. M. Sasian, Introduction to aberrations in optical imaging systems (Cambridge Univ. Press, Cambridge, UK, 2013), Chapter 10.
3 W. T. Welford, Aberrations of optical systems (Taylor & Francis Group, NewYork, 1986), Chapter 7.
4 G. Kim, H.-G. Rhee, and H.-S. Yang, "Testing of a convex aspheric secondary mirror for the Cassegrain telescope," Korean J. Opt. Photon. 28, 290-294 (2017).   DOI
5 H.-E. Kang, J.-B. Song, H.-S. Yang, and H. Kihm, "Measurement of primary-mirror vertex coordinates for a space camera by using a computer-generated hologram and a theodolite," Korean J. Opt. Photon. 28, 146-152 (2017).   DOI
6 Y.-S. Kim, K.-B. Ahn, K.-J. Park, I. K. Moon, and H.-S. Yang, "Accuracy assessment for measuring surface figures of large aspheric mirrors," J. Opt. Soc. Korea 13, 178-183 (2009).   DOI
7 S. H. Kim, H. J. Kong, J. U. Lee, J. H. Lee, and J. H. Lee, "Design and construction of an Offner spectrometer based on geometrical analysis of ring fields," Rev. Sci. Instrum. 85, 083108-7 (2014).   DOI
8 J. U. Lee and S. M. Yu, "Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature," J. Opt. Soc. Korea 13, 184-192 (2009).   DOI
9 I. Moon, S. Lee, J. Lim, H. S. Yang, H.-G. Rhee, J. B. Song, Y. W. Lee, J. U. Lee, and H. Jin, "Design and development of a wide field telescope," Proc. SPIE 8444, 844448 (2012).
10 J. U. Lee, Y. Kim, S. H. Seo, Y. Kim, and H. Kim, "Optical design of an image-space telecentric two-mirror system for wide-field line imaging," Curr. Opt. Photon. 1, 344-350 (2017).   DOI
11 G. I. Lebedeva and A. A. Garbul, "Prospective aerospace reflective objectives," J. Opt. Technol. 61, 610-614 (1994).
12 H.-J. Oh and J.-U. Lee, "Optical design of a wide-field off-axis two-mirror system without ray obstruction," Korean J. Opt. Photon. 28, 263-272 (2017).   DOI
13 S. Rosin, "Inverse Cassegrainian systems," Appl. Opt. 7, 1483-1497 (1968).   DOI
14 W. B. Wetherell and M. P. Rimmer, "General analysis of aplanatic Cassegrain, Gregorian, and Schwarzschild telescopes," Appl. Opt. 11, 2817-2832 (1972).   DOI
15 C. L. Wyman and D. Korsch, "Aplanatic two-mirror telescopes; a systematic study. 3: Schwarzschild-Couder configuration," Appl. Opt. 14, 992-995 (1975).   DOI