Browse > Article
http://dx.doi.org/10.3807/KJOP.2019.30.2.067

Comparison of Sensing Ability of Extraordinary Optical Transmission Sensor for Diverse Configurations of Substrate Hole Array  

Lee, Yeji (Department of Cogno-Mechatronics Engineering, Pusan National University)
Song, Hyerin (Department of Cogno-Mechatronics Engineering, Pusan National University)
Ahn, Heesang (Department of Cogno-Mechatronics Engineering, Pusan National University)
Kim, Kyujung (Department of Cogno-Mechatronics Engineering, Pusan National University)
Publication Information
Korean Journal of Optics and Photonics / v.30, no.2, 2019 , pp. 67-73 More about this Journal
Abstract
In this paper, we investigated the sensing ability of an extraordinary optical transmission sensor, which is based on the diverse configurations of highly ordered structures. The diverse nanostructures of subwavelength hole array were designed to have different periods and lattice configurations of the array. To verify the sensing ability of the sensor, we measured the transmittance spectra of samples (n = 1.333, 1.363) for diverse configurations of substrates. The measured transmittance spectra of diverse materials with different refractive indices show that the sensitivity increased as the period of the structures increased. Also, improved sensing performance of the sensor was achieved for the square array, compared to the hexagonal array.
Keywords
Subwavelength hole array; Extraordinary optical transmission; Square array; Hexagonal array;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, "A new generation of sensors based on extraordinary optical transmission," Acc. Chem. Res. 41, 1049-1057 (2008).   DOI
2 A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16 (2003).   DOI
3 G. D. Qing, S. Krishnan, P. Z. Li, V. D. Hilmi, H. K. Chan, and W. S. Xiao, "A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared," Appl. Phys. Lett. 101, 181112 (2012).   DOI
4 S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003).   DOI
5 Y. Wang, Y. Qin, and Z. Zhang, "Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays," Plasmonics 9, 203-207 (2014).   DOI
6 M. Irannejad and B. Cui, "Effects of refractive index variations on the optical transmittance spectral properties of the nano-hole arrays," Plasmonics 8, 1245-1251 (2013).   DOI
7 Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, and H. B. Chan, "Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays," Opt. Lett. 35, 2124-2126 (2010).   DOI
8 X. Zhang, Z. Li, S. Ye, S. Wu, J. Zhang, L. Cui, and B. Yang, "Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission," J. Mater. Chem. 22, 8903-8910 (2012).   DOI
9 F. Watt, A. A. Bettiol, J. A. Van Kan, E. J. Teo, and M. B. H. Breese, "Ion beam lithography and nanofabrication: a review," Int. J. Nanosci. 4, 269-286 (2005).   DOI
10 H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).   DOI
11 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).   DOI
12 S. H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3163 (2005).   DOI
13 A. Peer and R. Biswas, "Extraordinary optical transmission in nanopatterned ultrathin metal films without holes," Nanoscale 8, 4657-4666 (2016).   DOI
14 J. R. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J. S. Shin, and D. Kim, "Extraordinary transmission-based plasmonic nanoarrays for axially super-resolved cell imaging," Adv. Opt. Mater. 2, 48-55 (2014).   DOI
15 M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent nearfield optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).   DOI
16 W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X.-X. Zhanget, "Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications," Nanoscale 6, 7917-7923 (2014).   DOI
17 E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539 (1969).   DOI
18 H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).   DOI
19 X. Zhang, G. Liu, Z. Liu, Y. Hu, Z. Cai, X. Liu, and M. Liu, "Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays," Opt. Eng. 53, 107108 (2014).   DOI
20 N. Feth, C. Enkrich, M. Wegener, and S. Linden, "Large-area magnetic metamaterials via compact interference lithography," Opt. Express 15, 501-507 (2007).   DOI
21 Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005).   DOI
22 T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).   DOI
23 Y. Eksioglu, A. E. Cetin, and J. Petracek, "Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices," Plasmonics 11, 851-856 (2016).   DOI
24 A. E. Cetin, M. Drsata, Y. Eksioglu, and J. Petracek, "Effect of lattice geometry on optical transmission through subwavelength nanohole arrays," in Proc. 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (Greece, Sept. 2016), pp. 280-282.
25 A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A: Pure Appl. Opt. 7, S90 (2005).   DOI
26 B. K. Singh and A. C. Hillier, "Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings," Anal. Chem. 80, 3803-3810 (2008).   DOI
27 J. A. Jackman, A. R. Ferhan, and N. J. Cho, "Nanoplasmonic sensors for biointerfacial science," Chem. Soc. Rev. 46, 3615-3660 (2017).   DOI