Browse > Article
http://dx.doi.org/10.3807/KJOP.2018.29.5.187

Fiber-optic Communications - Historical Perspectives and Future Directions  

Chung, Yun Chur (School of Electrical Engineering, KAIST)
Publication Information
Korean Journal of Optics and Photonics / v.29, no.5, 2018 , pp. 187-203 More about this Journal
Abstract
This paper reviews the progress achieved in the field of fiber-optic communications during the last 40 years, and discusses its future directions. In particular, the highlights and milestones in the development of the high-capacity fiber-optic transmission system are presented in historical perspective.
Keywords
Fiber-optic communications; Historical review;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. H. Gnauck, P. J. Winzer, L. L. Buhl, T. Kawanishi, T. Sakamoto, M. Izutsu, and K. Higuma, "12.3-Tb/s C-band DQPSK transmission at 3.2 b/s/Hz spectral efficiency," Proc. ECOC (Sept. 2006), paper Th4.1.2.
2 S. Zhang, F. Yaman, Y.-K. Huang, J. D. Downie, D. Zou, W. A. Wood, A. Zakharian, R. Khrapko, S. Mishra, V. Nazarov, J. Hurley, I. B. Djordjevic, E. Mateo, Y. Inada, "Capacity-approaching transmission over 6375 km at spectral efficiency of 8.3 bit/s/Hz," Proc. OFC (Mar. 2016), paper Th5C.2.
3 H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi and T. Morioka, "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source," Electron. Lett. 41, 270-271 (2005).   DOI
4 "ITU-T recommendation G.692, Optical interfaces for multichannel systems with optical amplifiers," ITU (Oct. 1998).
5 "ITU-T recommendation G.694.1, Spectral grids for WDM applications: DWDM frequency grid," ITU (Feb. 2012).
6 A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, Member, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, "1 -Tb/s Transmission Experiment," IEEE Photon. Technol. Lett. 8, 1264-1266 (1996).   DOI
7 G. May, A. Solheim, and J. Conradi, "Extended 10 Gb/s fiber transmission distance at 1538 nm using a duobinary receiver," IEEE Photon. Technol. Lett. 6, 648-650 (1994).   DOI
8 K. Yonenaga and K. Hagimoto, "$10-Gbit/s{\times}four-channel$ WDM transmission experiment over 2400-km DSF using optical DPSK direct detection scheme," Proc. OFC (Feb. 1997), paper ThS2.
9 S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express 23, 4960-4969 (2015).   DOI
10 O. E. DeLange, "Wide-band optical communication systems: Part II-Frequency-division multiplexing," Proc. IEEE, 58, 1683-1690 (1970).   DOI
11 T. Imai, Y. Hayashi, N. Ohkawa, T. Sugie, Y. Ichihashi, and T. Ito, "Field demonstration of 2.5 Gbit/s coherent optical transmission through installed submarine fibre cables," Electron. Lett. 26, 1407-1409 (1990).   DOI
12 D. MacGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation," Proc. OFC (Mar. 2005), paper PDP27.
13 S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission," Proc. OFC (Mar. 2005), paper PDP29.
14 D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightw. Technol. 24, 12-21 (2006).   DOI
15 K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," IEEE J. Sel. Topics Quantum Electron. 12, 563-570 (2006).   DOI
16 K. Roberts, "Electronic dispersion compensation beyond 10 Gb/s," in Proc. 2007 Digest of the LEOS Summer Topical Meetings (Jul. 2007), pp. 9-10.
17 C. Laperle and M. O'Sullivan, "Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers," J. Lightw. Technol. 32, 629-643 (2014).   DOI
18 R.A. Griffin and A.C. Carter, "Optical differential quadrature phase-shift key (oOQPSK) for high capacity optical transmission," Proc. OFC (Mar. 2002), paper WX6.
19 P. Bower and I. Dedic, "High speed converters and DSP for 100G and beyond," Opt. Fiber Technol. 17, 464-472 (2011).   DOI
20 L. Kull, D. Luu, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, T. Morf, A. Cevrero, I. Oezkaya, H. Yueksel, and T. Toifl, "CMOS ADCs towards 100 GS/s and beyond," in Proc. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (Oct. 2016).
21 A. Sano, H. Masuda, Y. Kisaka, S. Aisawa, E. Yoshida, Y. Miyamoto, M. Koga, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, "14-Tb/s (140 111-Gb/s PDM/WDM) CSRZ-DQPSK transmission over 160 km using 7-THz bandwidth extended L-band EDFAs," Proc. ECOC (Sept. 2006), paper Th4.1.1.
22 A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, "25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals," Proc. OFC (Mar. 2007), paper PDP19.
23 Y. Takushima, H. Y. Choi, and Y. C. Chung, "Transmission of 108-Gb/s PDM 16ADPSK signal on 25-GHz grid using non-coherent receivers," Opt. Express 17, 13458-13466 (2009).   DOI
24 A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, "$10{\times}112\;Gb/s$ PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency," Proc. OFC (2009), paper PDPB8.
25 J. Yu, X. Zhou, Y.-K. Huang, S. Gupta, M.. Huang, T. Wang, and P. Magill, "112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM grid," Proc. OFC (2010), paper OThM1.
26 G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, "Transmission of 16.4 Tbit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver," Proc. OFC (Mar. 2008), paper PDP3.
27 R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).   DOI
28 J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, "25Tb/s transmission over 5,530km using 16QAM at 5.2 b/s/Hz spectral efficiency," Opt. Express 21, 1555-1560 (2013).   DOI
29 H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, "13.5 Tb/s ($135{\times}111\;Gb/s/ch$) noguard-interval coherent OFDM transmission over 6248 km using SNR maximized second-order DRA in the extended L-band," Proc. OFC (Mar. 2009), paper PDPB5.
30 "Product brochure: 6500 packet-optical platform," Ciena (Apr. 2017).
31 H. Ono, M. Yamada, and Y. Ohishi, "Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the $1.57-1.60-{\mu}m$ wavelength region," IEEE Photon. Technol. Lett. 9, 596-598 (1997).   DOI
32 T. Kasamatsu, Y. Yano, and H. Sekita, "$1.50-{\mu}m$-band gain-shifted thulium-doped fiber amplifier with 1.05- and $1.56-{\mu}m$ dual-wavelength pumping," Opt. Lett. 24, 1684-1686 (1999).   DOI
33 T. J. Whitley, "A review of recent system demonstrations incorporating $1.3-{\mu}m$ praseody-mium-doped fluoride fiber amplifiers," J. Lightw. Technol. 13, 744-760 (1995).   DOI
34 T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614-1616 (2005).   DOI
35 M. Nakazawa, "Extremely advanced transmission with 3M technologies (multi-level modulation, multi-core & multi-mode)," Proc. OFC (Mar. 2012), paper OTu1D.1.
36 J. Bromage, "Raman amplification for fiber communications systems," J. Lightw. Technol. 22, 79-93 (2004).   DOI
37 R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibers," Electron. Lett. 24, 47-48 (1988).   DOI
38 A. R. Chraplyvy, "The coming capacity crunch," Proc. ECOC, plenary talk (Sept. 2009).
39 D. J. Richardson, J. M. Fini and L. E. Nelson, "Space-division multiplexing in optical fibres," Nat. Photon. 7, 354-362 (2013).   DOI
40 Y. Sasaki, R. Fukumoto, K. Takenaga, K. Aikawa, K. Saitoh, T. Morioka, and Y. Miyamoto, "Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre," Proc. ECOC (Sept. 2016), paper W.2.B.2.
41 G. Li, N. Bai, N. Zhao, and C. Xia, "Space-division multiplexing: the next frontier in optical communication," Adv. Opt. Photon. 6, 413-487 (2014).   DOI
42 H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, "1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency," Proc. ECOC (Sept. 2012), paper Th.3,C.1.
43 K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, "$1.03-Exabit/s{\cdot}km$ super-Nyquist-WDM transmission over 7,326-km seven-core fiber," Proc. ECOC (Sept. 2013), paper PD3.E.3.
44 "Infinera and Seaborn Set Subsea Industry Benchmark for Capacity-Reach with XTS-3300 on Seabras-1," Submarine Cable Networks (Oct. 1, 2017).
45 U. Holzle, "A ubiquitous cloud requires a transparent network," Proc. OFC, plenary talk (Mar. 2017).
46 A. Vahdat, H. Liu, X. Zhao, and C. Johnson, "The Emerging Optical Data Center," Proc. OFC (Mar. 2011), paper OTuH2.
47 M. Burgess "Google's next submarine cable will connect Singapore to Australia," Wired (Apr. 6, 2017).
48 P. Chanclou, A. Pizzinati, F. L. Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. L. Guyader, L. Guillo, Q. Deniel, S. Gosselini, S. D. LE, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O'Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G, Gavioli, and P. Galli, "Optical fiber solution for mobile fronthaul to achieve cloud radio access network," Proc. Future Network & Mobile Summit (July 2013), pp. 1-11.
49 V. W. S. Chan, Free-space optical communications J. Lightw. Technol. 24, 4750-4762 (2006).   DOI
50 X. Zhu and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1300 (2002).   DOI
51 M. A. Taubenblatt, "Optical interconnects for high-performance computing," J. Lightw. Technol. 30, 448-458 (2012).   DOI
52 T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, "$12-core{\times}3-mode$ dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization, Proc. OFC (Mar. 2014), paper Th5B.2.
53 B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano and J. Marciante, "2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb," Proc. ECOC (Sept. 2015), paper PDP.3.1.
54 T. Mizuno K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, "32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line," Proc. OFC (Mar. 2016), paper Th5C.3.
55 A. A. M. Saleh and J. M. Simmons, "All-optical networking - evolution, benefits, challenges, and future vision," Proc. IEEE 100, 1105-1117 (2012).   DOI
56 T. A. Strasser and J. Taylor, "ROADMS unlock the edge of the network," IEEE Commun. Mag. 46, 146-149 (2008).
57 "MCP-9328: Reconfigurable optical add-drop multiplexer (ROADM) - A global strategic business report, Global Industry Analysts, Inc. (May 7, 2015).
58 M. Kawahata, "Development of optical visual information system," in Proc. European Electro-Optics Conferences, SPIE (Oct. 1976), Vol. 99, pp. 47-55.
59 Y. C. Chung, "FTTH - past, present, and future," Proc. CLEO-PR, plenary talk (Aug, 2015).
60 D. Thomson, A. Zilkie, J. E Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fedeli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O'Brien, G. Z Mashanovich, and M. Nedeljkovic, "Roadmap on silicon photonics," J. Opt. 18, 073003, 1-20 (2016).
61 "HKT offers 10-Gbps broadband FTTH in Hong Kong," Lightwave Magazine (Feb. 16, 2015).
62 M. Zager, "10 Gigabits: The next frontier," Broadband Communities (Nov./Dec. 2015), pp. 86-89.
63 D. Nesset, "PON roadmap," J. Opt. Commun. Netw. 9, A71-A76 (2017).   DOI
64 "15 influential Innovations of the Past 50 Years," CNBC, (https://www.cnbc.com/2011/09/19/15-Influential-Innovations-of-the-Past-50-Years.html?slide=5).
65 "The top 10 inventions of the 20th century," Act for Libraries (http://www.actforlibraries.org/the-top-10-inventions-of-the-20th-century/).
66 "20th Century Technology," Time Magazine, (http://content.time.com/time/photogallery/0,29307,2026224,00.html).
67 "A world transformed: what are the top 30 innovations of the last 30 years?," Knowledge@Wharton, Feb. 18, 2009 (http://knowledge.wharton.upenn.edu).
68 J. Hecht, "City of light: the story of fiber optics," Oxford University Press (April 2004).
69 "Alcatel-Lucent unveils single-carrier 100G/200G DWDM optical line card," Lightwave (Sept. 24, 2014).
70 G. Stix, "The triumph of the light," Scientific American (Jan. 2001), Vol. 284, No. 1, pp. 80-86.   DOI
71 A. R. Chraplyvy, "The coming capacity crunch," Proc. ECOC, plenary talk (Sept. 2009).
72 Cisco, "The zettabyte era: Trends and analysis," white paper (June 7, 2017).
73 R. M. Jansen and R. C. Prime, "TH-3 microwave radio system: system considerations," Bell Syst. Tech. J. 50, 2085-2116 (1971).   DOI
74 G. Kizer, "Digital microwave communication: Engineering point-to-point microwave systems," Wiley-IEEE Press (June 2013).
75 "Greatest engineering achievements of the 20th century," National Academy of Engineering, (http://www.greatachievements.org/).
76 G. J. Mullet, "Wireless telecommunications systems and networks," Thomson Delmar Learning (Sept. 2005).
77 D. A. Alsberg, J. C. Bankert, and P. T. Hutchison, "The WT4/WT4A millimeter-wave transmission system," Bell Syst. Tech. J. 56, 1829-1848 (1977).   DOI
78 W. D. Warters, "Millimeter waveguide scores high in field test," Bell Laboratories Record (Nov. 1975), pp. 401-408.
79 K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proc. IEE 113, 1151-1158 (1966).
80 F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass waveguides," Appl. Phys. Lett. 17, 423-425 (1970).   DOI
81 I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, "Junction lasers which operate continuously at room temperature, Appl. Phys. Lett. 17, 109-111 (1970).   DOI
82 R. W. Dixon, "Remembering the million-hour laser," Optics & Photonics News (May 2012), pp. 44-48.
83 I. Jacobs, "Atlanta fiber system experiment: overview," Bell Syst. Tech. J. 57, 1717-1721 (1978).   DOI
84 I. Jacobs, "Lightwave system development: looking back and ahead," Optic & Photonics News (Feb. 1995), pp. 19-23.
85 R. J. Sanferrare, "Terrestrial lightwave systems," AT&T Tech. J. 66, 97-107 (1987).
86 M. I. Schwartz, W. A. Reenstra, J. H. Mullins, and J. S. Cook, "The Chicago lighwave communications project," Bell Syst. Tech. J. 57, 1881-1888 (1978).   DOI
87 G. P. Agrawal, "Lightwave technology: Telecommunication systems," Wiley-Interscience (2005).
88 "Special Edition: FT series G," The Valley Voice, AT&T Network Systems (Feb. 1986).
89 R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, "High-gain rare-earth-doped fiber amplifier at $1.54{\mu}m$," Proc. OFC/IOOC (Feb. 1987), paper WI2.
90 E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum., "Erbium fiber laser amplifier at 1.55 mm with pump at 1.49 mm and Yb sensitized Er oscillator," Proc. OFC (Feb. 1988), paper PD2-1.
91 Y. Kimura, K. Suzuki, and M. Nakazawa, "Efficient $Er^{3+}$-doped optical fiber amplifier pumped by a $1.48-{\mu}m$ high-power laser diode," Proc. OFC (Feb. 1989), paper TUG6.
92 M. Nakazawa, Y. Kimura, and K. Suzuki, "Soliton amplification and transmission with an $Er^{3+}$-doped fiber repeater pumped by InGaAsP laser diodes," Proc. OFC (Feb. 1989), paper PD2-1.
93 N. Edagawa, Y. Yoshida, H. Taga, S. Yamamoto, K. Mochizuki, and H. Wakabayashi, "904 km, 1.2 Gbit/s non-regenerative optical fibre transmission experiment using 12 Er-doped fiber amplifiers," Electron Lett. 26, 66-67 (1990).   DOI
94 S. Saito, T. Imai, T. Sugie, N. Ohkawa, Y. Ichihashi, and T. Ito, "An over 2,200 km coherent transmission experiment at 2.5 Gbit/s using erbium-doped fiber amplifiers," Proc. OFC (Feb. 1990), paper PD2-1.
95 T. Mack, "Communications: the next wave," Forbes (Oct. 6, 1997).
96 H. Taga, Y. Yoshida, N. Edagawa, S. Yamamoto, and H. Wakabayashi, "459 km, "2.4 Gbit/s four wavelength multiplexing optical fibre transmission experiment using six Er-doped fibre amplifiers," Electron Lett. 26, 500-601 (1990).   DOI
97 D. A. Fishman, J. A. Nagel, T. W. Cline, R. E. Tench, T. C. Pleiss, T. Miller, D. G. Coult, M. A. Milbrodt, P. D. Yeates, A. Chraplyvy, R. Tkach, A. B. Picirilli, J. R. Simpson, and C. M. Miller, "A high capacity noncoherent FSK lightwave field experiment using $Er^{3+}$-doped fiber optical amplifiers," IEEE Photon. Technol. Lett. 2, 662-664 (1990).   DOI
98 C. Dragone, "An NxN optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991).   DOI
99 B. Gowan, "#Ciena25: The story behind the founding of Ciena," Ciena, Sept. 14, 2017 (http://www.ciena.com/insights/articles/Ciena-20-The-Founding-of-Ciena_prx.html).
100 H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai,S. Kinoshita, M. Seino H. Nishimoto, and T. Chikama, "1.1 Tb/s WDM transmission over a 150 km $1.3{\mu}m$ zero-dispersion single-mode fiber," Proc. OFC (Feb. 1996), paper PD19-1.
101 A. H. Gnauck, A. R. Chraplyvy, R. W. Thach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, "One terabit/s transmission experiment," Proc. OFC (Feb. 1996), paper PD20-1.
102 T. Morioka, H. Takara, S. Kawanshi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "$100\;Gbit/s{\times}10\;channel$ OTDM/WDM transmission using a single supercontinuum WDM source," Proc. OFC (Feb. 1996), paper PD21-1.
103 P. E. White, "Estimated network load," Bellcore, private communication (Jan. 1993).
104 K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, "10.92-Tb/s ($273{\times}40-Gb/s$) triple-band/ultra-dense WDM optical-repeatered transmission experiment," Proc. OFC (Mar. 2001), paper PD24-1.
105 S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veitlr, A. Jourdan, and J.-P. Hamaid, "10.2 Tbit/s ($256{\times}42.7\;Gbit/s$ PDM/WDM) transmission over 100 km $TeraLight^{TM}$ fiber with 1.28 bit/s/Hz spectral efficiency," Proc. OFC (Mar. 2001), paper PD25-1.
106 A. A. Huurademan, "The worldwide history of telecommunications," Wiley-Interscience (2003).
107 A. M. Ozylko, "Measurements and mismeasurements and the dynamics of data traffic growth," Computer Measurement Group's International Conference (Dec. 2002).
108 M. Castells, "The information age: economy, society and culture, Vol. 1-3," Wiley-Blackwell (1996-1998).
109 M. D. O'Dell, "Racing with an exponential or the dangers of linear thinking in an exponential world," Stanford symposium, Optical Internet: The Next Generation (May 16, 2000).
110 G. Gilder, "Fiber keeps its promise," Forbes ASAP (Apr. 7, 1997).
111 J. Wimmer, plenary talk, OFC/IOOC 1999 (Feb. 1999).
112 E. Kreifeldt, "MCI WorldCom's Wimmer lays out optical roadmap," Fiber Optics Online (Apr. 4, 2000).
113 J. Hecht, "Boom, bubble, burst: The fiber optic mania," Optics & Photonics News (Oct. 2016), pp. 48-53
114 C. Lu, "The race for bandwidth: understanding data transmission," Microsoft Press (1998).
115 V. Cerf, "The high capacity challenge," plenary talk, OFC 2002 (Mar. 2002).
116 "Global internet geography," TeleGeography (2003).
117 "The great telecoms crash," Economist (July 18, 2002).
118 L. Endlich, "Optical illusions: Lucent and the crash of telecom," Simon & Schuster (2004).
119 M. A. Wegleitner, "Maximizing the impact of optical technology," plenary talk, OFC/NFOEC (Mar. 2007).
120 A. Viglienzoni, "Evolution of products and enabling technologies for optical networks," Proc. Photonics in Switching (Aug. 2008).
121 P. Polishuk, "Network traffic growth projection," Information Gatekeepers Inc. (Dec. 19, 2006).
122 "IX backplane maximum/minimum traffic volume," Japan Internet Exchange Co (June 7, 2014).
123 "Cisco visual networking index: Forecast and methodology, 2011-2016," Cisco (May 30, 2012).
124 R. W. Tkach, "Technologies for a renaissance in long-distance optical communications," plenary talk, Asia-Pacific Optical Communications (APOC) Conference (Oct. 2008).
125 S. E. Ante, "Telecom: Back from the dead," Businessweek (June 26, 2007).
126 T. Wu, "Bandwidth is the new black gold," TIME Magazine (Mar. 11, 2010).
127 R. Rios-Muller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jenneve, L. Schmalen, and G. Charlet, "1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM," Proc. OFC (Mar. 2015), paper Th5B.1.
128 D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, "26 Tbit $s^{-1}$ line-rate super-channel transmission utilizing all-optical fast Fourier transform processing," Nat. Photon. 5, 364-371 (2011).   DOI
129 "ZTE displays 400-Gbps and 1-Tbps DWDM prototype," Lightwave (June 18, 2012).
130 Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, "1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access," Proc. OFC (Mar. 2009), paper PDPC1.
131 D. S. Millar1, L. Galdino, R. Maher, M. Pajovic, T. Koike-Akino, G. Saavedra, D. J. Elson, D. Lavery, K. Shi, M. S. Erkilinc, E. Sillekens, R. I. Killey, B. C. Thomsen, K. Kojima, K. Parsons, and P. Bayvel, "A simplified dual-carrier DP-64QAM 1 Tb/s transceiver," Proc. OFC (Mar. 2017), paper M3D.2.
132 "Recommendation ITU-T G.709/Y.1331," ITU (June 22, 2016).
133 "The 2016 Ethernet roadmap," Ethernet Alliance (Mar. 2016).
134 S. J. Trowbridge, "Ethernet and OTN - 400G and beyond," Proc. OFC (Mar. 2015), paper Th3H.1.
135 N. Yoshikane and I. Morita, "1.14 b/s/Hz spectrally efficient $50{\times}85.4-Gb/s$ transmission over 300 km using copolarized RZ-DQPSK signals," J. Lightw. Technol. 23, 108-114 (2005).   DOI