Browse > Article
http://dx.doi.org/10.3807/KJOP.2016.27.2.061

A Study of Three-Dimensional Measurement By Transmission Deflectometry and Hilbert Transform  

Na, Silin (Department of Physics, Jeju National University)
Yu, Younghun (Department of Physics, Jeju National University)
Publication Information
Korean Journal of Optics and Photonics / v.27, no.2, 2016 , pp. 61-66 More about this Journal
Abstract
We used transmission deflectometry to measure the three-dimensional shapes of optical components, and we used the Hilbert transform to retrieve the phases from measured deformed fringe images. Deflectometry is useful for measuring large-scale samples, and specular samples. We have retrieved the phases from deformed fringe images and Hilbert-transformed images, and have used the least-squares method to find the height information. We have verified that phase retrieval using Hilbert transform is useful by computer simulation and experiment.
Keywords
Deflrctometry; Phase measuring deflectometry; Hilbert transform;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Malacara, Optical Shop Testing (New York: Wiley Interscience; USA, 2007), Chapter 1-4.
2 G. G. Torales, M. Strojnik, and G. Paez, "Risley prisms to control wave-front tilt and displacement in a vectorial shearing interferometer," Appl. Opt. 41, 1380-1384 (2002).   DOI
3 G. G. Torales, G. Paez, M. Strojnik, J. Villa, J.L. Flores, and A.G. Alvarez, "Experimental intensity patterns obtained from a 2D shearing interferometer with adaptable sensitivity," Opt. Commun. 257, 16-26 (2006).   DOI
4 J. Pfund, N. Lindlein, J. Schwider, R. Burow, T. Blumel, and K.-E. Elssner, "Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack-Hartmann sensor," Opt. Lett. 23, 742-744 (1998).   DOI
5 H. Canabal and J. Alonso, "Automatic wavefront measurement technique using a computer display and a charge-coupled device camera," Opt. Eng. 41, 822-826 (2002).   DOI
6 C. Quan, W. Chen, and C. J. Tay, "Phase-retrieval techniques in fringe-projection profilometry," Opt. Lasers Eng. 48, 235-243 (2010).   DOI
7 C. D. Perciante and J.A. Ferrari, "Visualization of twodimensional phase gradients by subtraction of a reference periodic pattern," Appl. Opt. 39, 2081-2083 (2000).   DOI
8 Z. Liu, X. Huang, and H. Xie, "A novel orthogonal transmission-virtual grating method and its applications in measuring micro 3-D shape of deformed liquid surface," Opt. Lasers Eng. 51, 167-171 (2013).   DOI
9 W. Shi, X. Huang, and Z. Liu, "Transmission-lattice based geometric phase analysis for evaluating the dynamic deformation of a liquid surface," Opt. Express, 22, 10559-10569 (2014).   DOI
10 M. C. Knauer, J. Kaminski, and G. Hausler, "Phase measuring deflectometry: a new approach to measure specular free-form surfaces," Proc. SPIE 5457, 366-376 (2004).
11 J. Horbach and T. Dang, "3D reconstruction of specular surfaces using a calibrated projector-camera setup," Mach. Vis. Appl. 21, 331-340 (2010).   DOI
12 Y. Tang, X. Su, Y. Liu, and H. Jing, "3d shape measurement of the aspheric mirror by advanced phase measuring deflectometry," Opt. Express 16, 15090-15096 (2008).   DOI
13 G. Hausler, C. Richter, K.H. Leitz, and M. C. Knauer, "Micro deflectometry a novel tool to acquire 3D micro topography with nanometer height resolution," Opt. Lett. 33, 396-398 (2008).   DOI
14 S. Shin and Y. Yu, "Determining the reractive index distribution of an optical component using transmission deflectometry with liquids," Korean J. Optics and Photonics. 25, 326-333 (2014).   DOI
15 M. Takeda and K. Mutoh, "Fourier transform profilometry for the automatic measurement of 3-D object shapes," Appl. Opt. 22, 3977-3982 (1983).   DOI
16 J. M. Huntley and H. O. Saldner, "Temporal phase unwrapping algorithm for automated interferogram analysis," Appl. Opt. 32, 3047-3052 (1993).   DOI
17 M. A. sutto, W. Zhao, S. R. McNeill, H. W. Schreier, and Y. J. Chao, "Development and assessment of single-image fringe projection method for dynamic application," Exp. Mech. 42, 205-217 (2001).
18 M. M. Hasan, K. Teramoto, and S. Tanemura, "Windowed fourier assisted two-dimensional hilbert transform fro fringe phase extraction," Optik 124, 3996-4000 (2013)   DOI
19 V. D. Madjarova and H. kadono, "Dynamic electronic speckle pattern interferometry phase analysises with temporal hilbert transform," Opt. Express 11, 617-623 (2003).   DOI
20 U. P. Kumar, N. K. Mohan, and M. P. Kothiyal, "Time average vibration fringe analysis using hilbert transformation," Appl. Opt. 49, 5777-5786 (2010).   DOI
21 W. H. Southwell, "Wave-front estimation from wave-front slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980).   DOI
22 L. Huang and A. Asundi, "Improvement of least-squares integration method with iterative compensations in fringe reflectometry," Appl. Opt. 51, 7459-7465 (2012).   DOI
23 B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, "Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy," Opt. Express 13, 9361-9373 (2005).   DOI