Browse > Article
http://dx.doi.org/10.3807/KJOP.2015.26.1.001

Clinical Applications of Intracoronary OCT (Invited Paper)  

Ha, Jinyong (Department of Optical Engineering, Sejong University)
Kim, Jung-Sun (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine)
Hong, Myeong-Ki (Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine)
Publication Information
Korean Journal of Optics and Photonics / v.26, no.1, 2015 , pp. 1-8 More about this Journal
Abstract
The most common cause of a heart attack is known as coronary artery disease, which narrows the arteries and reduces the blood flow to the heart. To treat coronary artery stenosis, percutaneous coronary intervention (PCI) (a nonsurgical procedure to install a stent, which holds the artery wall open) is performed. Intracoronary optical coherence tomography (OCT) is a catheter-based, invasive optical imaging system. To determine whether PCI is appropriate, and to perform stent evaluation in a catheterization laboratory, OCT examinations are carried out. This review details the fundamental principles and technological status of intracoronary OCT imaging, and discusses the ongoing clinical applications to determine the benefits of OCT-guided PCI.
Keywords
Optical coherence tomography; Percutaneous coronary intervention; Stent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Lozano, M. Naghavi, K. Foreman, et al., "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010," Lancet 380, 2095-2128 (2012).   DOI   ScienceOn
2 G. S. Mintz, "Clinical utility of intravascular imaging and physiology in coronary artery disease," J. Am. Coll. Cardiol. 64, 207-222 (2014).   DOI
3 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).   DOI
4 R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).   DOI
5 S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency domain imaging," Opt. Express 11, 2953-2963 (2003).   DOI
6 H. C. Lowe, J. Narula, J. G. Fujimoto, I.-K. Jang, "Intracoronary optical diagnostics current status, limitations, and potential," J. Am. Coll. Cardiol. Cardiovasc. Interv. 4, 1257-1270 (2011).   DOI
7 T. Wang, W. Wieser, G. Springeling, R. Beurskens, C. T. Lancee, T. Pfeiffer, A. F. W. van der Steen, R. Huber, and G. van Soest, "Intravascular optical coherence tomography imaging at 3200 frames per second," Opt. Lett. 38, 1715-1717 (2013).   DOI
8 H. S. Cho, S.-J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W.-Y. Oh, "High frame-rate intravascular optical frequency-domain imaging in vivo," Biomed. Opt. Express 5, 223-232 (2014).   DOI
9 R. Ross, "Atherosclerosis-an inflammatory disease," New England Journal of Medicine 340, 115-126 (1999).   DOI
10 A. V. Finn, M. Nakano, J. Narula, F. D. Kolodgie, and R. Virmani, "Concept of vulnerable/unstable plaque," Arteriosclerosis, Thrombosis, and Vascular Biology 30, 1282-1292 (2010).   DOI
11 N. H. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J. Bonnier, J. Bartunek, and J. J. Koolen, "Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenosis," New England Journal of Medicine 334, 1703-1708 (1996).   DOI
12 N. H. Pijls, V. Klauss, U. Siebert, E. Powers, K. Takazawa, W. F. Fearon, J. Escaned, Y. Tsurumi, T. Akasaka, H. Samady, and B. De Bruyne, "Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry," Circulation 105, 2950-2954 (2002).   DOI
13 J. E. Sousa, M. A. Costa, and A. Abizaid, "Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasoundstudy," Circulation 103, 192-195 (2001).   DOI
14 S. Garg and P. W. Serruys, "Coronary stents: looking forward," J. Am. Coll. Cardiol. 56, S43-S78 (2010).   DOI   ScienceOn
15 J. S. Kim, J. Ha, B. K. Kim, D. H. Shin, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, "The relationship between post-stent strut apposition and follow-up strut coverage assessed by a contour plot optical coherence tomography analysis," JACC Cardiovasc. Interv. 7, 641-651 (2014).
16 T. F. Luscher, J. Steffel, F. R. Eberli, M. Joner, G. Nakazawa, F. C. Tanner, and R. Virmani, "Drug-eluting stent and coronary thrombosis biological mechanisms and clinical implications," Circulation 115, 1051-1058 (2007).   DOI
17 G. Guagliumi, V. Sirbu, G. Musumeci, R. Gerber, G. Bondi-Zoccai, H. Ikejima, E. Ladich, N. Lortkipanidze, A. Matiashvili, O. Valsecchi, R. Virmani, and G. W. Stone, "Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging," J. Am. Coll. Cardiol. Intv. 5, 12-20 (2012).
18 J. Ha, B. K. Kim, J. S. Kim, D. H. Shin, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, "Assessing neointimal coverage after DES implantation by 3D OCT," J. Am. Coll. Cardiol. Img. 5, 852-853 (2012).   DOI   ScienceOn
19 V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. Bochove, R. J. Geuns, H. M. Garcia-Garcia, and P. W. Serruys, "Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application," Eur. Heart J. 34, 875-885 (2013).   DOI
20 J. Ha, J. S. Kim, G. S. Mintz, B. K. Kim, D. H. Shin, Y. G. Ko, D. Choi, Y. Jang, and M. K. Hong, "3D OCT versus FFR for jailed side-branch ostial stenosis," JACC Cardiovasc. Imaging 7, 204-205 (2014).   DOI
21 A. M. Fard, P. Vacas-Jacques, E. Hamidi, H. Wang, R. W. Carruth, J. A. Gardecki, and G. J. Tearney, "Optical coherence tomography-near infrared spectroscopy system and catheter for intravascular imaging," Opt. Express 21, 30849-30858 (2013).   DOI
22 M. I. Papafaklis, C. V. Bourantas, V. Farooq, R. Diletti, T. Muramatsu, Y. Zhang, D. I. Fotiadis, Y. Onuma, H. M. Garcia Garcia, L. K. Michalis, and P. W. Serruys, "In vivo assessment of the three-dimensional haemodynamic microenvironment following drug-eluting bioresorbable vascular scaffold implantation in a human coronary artery: fusion of frequency domain optical coherence tomography and angiography," ahead of print, EuroIntervention (2013).
23 H. Yoo, J. W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J. R. McCarthy, V. Ntziachristos, B. E. Bouma, F. A. Jaffer, and G. J. Tearney, "Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo," Nat. Med. 17, 1680-1684 (2011).   DOI
24 S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," International Journal of Cardiology 107, 400-409 (2006).   DOI   ScienceOn
25 S. Liang, T. Ma, J. Jing, X. Li, J. Li, K. Kirk Shung, Q. Zhou, J. Zhang, and Z. Chen, "Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging," Opt. Lett. 39, 6652-6655 (2014).   DOI