Browse > Article
http://dx.doi.org/10.3807/KJOP.2014.25.5.279

Electrically Controllable Terahertz Wave Modulator Based on a Metamaterial and VO2 Thin Film  

Ryu, Han-Cheol (Department of Car Mechatronics, Sahmyook University)
Publication Information
Korean Journal of Optics and Photonics / v.25, no.5, 2014 , pp. 279-285 More about this Journal
Abstract
We propose an electrically controllable terahertz wave modulator based on a metamaterial and vanadium dioxide ($VO_2$) thin film. A square loop shape is designed to play the roles of both a resonating metamaterial and a heater to electrically control the conductivity of $VO_2$. The transmission characteristics of the modulator were controlled by voltage. The transmission coefficient of the modulator was stably changed from 0.27 to 0.80 at 470 GHz according to the conductivity values of $VO_2$.
Keywords
Metamaterial; Vanadium dioxide; Terahertz; Modulator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. D. Ventra, and D. N. Basov, "Reconfigureablegraidient index using $VO_2$ memory metamaterials," Appl. Phys. Lett. 99, 044103 (2011).   DOI
2 J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Zing, and W. Zhang, "A close-ring pair terahertz metamaterial resonating at normal incidence," Opt. Express 17, 20307-20312 (2009).   DOI
3 Z. Hao, M. C. Martin, B. Hartenenck, S. Cabrini, and E. H. Anderson, "Negative index of refraction observed in a single layer of closed ring magnetic dipole resonators," Appl. Phys. Lett. 91, 253119 (2007).   DOI
4 S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, "Tunable DFB laser with a striped thin-film heater," IEEE Photon. Technol. Lett. 4, 321-323 (1992).   DOI
5 F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, and S.-J. Chang, "State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping," Opt. Lett. 38, 1582-1584 (2013).   DOI
6 G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).   DOI
7 M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470, 369-373 (2011).   DOI   ScienceOn
8 H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006).   DOI   ScienceOn
9 P. U. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, "Metal-insulator phase transition in a $VO_2$ thin film observed with terahertz spectroscopy," Phys. Rev. B 74, 205103 (2006).   DOI
10 R. Yan, B. S. Rodriguez, L. Liu, D. Jena, and H. G. Xing, "A new class of electrically tunable metamaterial terahertz modulators," Opt. Express 20, 28664-28671 (2012).   DOI
11 P. Mandal, A. Speck, C. Ko, and S. Ramanathan, "Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition," Opt. Lett. 36, 1927-1929 (2011).   DOI
12 Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, and D. S. Kim, "Electrical control of terahertz nano antennas on $VO_2$ thin film," Opt. Express 19, 21211-21215 (2011).   DOI
13 D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, "Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide," Phys. Rev. Lett. 99, 226401 (2007).   DOI
14 Q. Y. Wen, H. W. Zhang, Q. H. Yang, Z. Chen, Y. Long, Y. L. Jing, Y. Lin, and P. X. Zhang, "A tunable hybrid metamaterial absorber based on vanadium oxide films," J. Phys. D 45, 235106 (2012).   DOI
15 N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, "Tunable continuous-wave terahertz generation/detection with compact 1.55 ${\mu}m$ detuned dual-mode laser diode and InGaAs based photomixer," Opt. Express 19, 15397-15403 (2011).   DOI
16 P. U. Jepsen, D. G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging - Modern techniques and applications," Laser Photon. Rev. 5, 124-166 (2011).   DOI
17 M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007).   DOI   ScienceOn
18 H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, "Terahertz spectroscopy and imaging for defense and security applications," Proc. IEEE 95, 1514-1527 (2007).
19 S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, "Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection," Opt. Express 20, 18432-18439 (2012).   DOI
20 J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with negative refractive index," Nature 455, 376-379 (2008).   DOI   ScienceOn
21 D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-979 (2006).   DOI   ScienceOn
22 H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, and K. H. Park, "Simple and cost-effective thickness measurement terahertz system based on a compact 1.55 ${\mu}m$ ${\lambda}/4$ phase-shifted dual-mode laser," Opt. Express 20, 25990-25999 (2012).   DOI
23 M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature 487, 345-348 (2012).   DOI
24 Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, "Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method," Opt. Express 22, 11070-11076 (2014).   DOI