Browse > Article
http://dx.doi.org/10.3807/KJOP.2011.22.6.269

Surface Plasmon Modes Confined in the Gap Between Metal Nanowire and Dielectric Slab  

Hahn, Chol-Oong (Department of Physics, Hanyang University)
Oh, Cha-Hwan (Department of Physics, Hanyang University)
Song, Seok-Ho (Department of Physics, Hanyang University)
Publication Information
Korean Journal of Optics and Photonics / v.22, no.6, 2011 , pp. 269-275 More about this Journal
Abstract
We propose a metal-dielectric hybrid waveguide structure consisting of a single metal nanowire placed on a flat dielectric slab. Mode size and propagation loss of the surface-plasmons confined in the metal-dielectric gap are compared with those of the complementary structure with a dielectric nanowire on a metal surface. In the case of the nanowire's diameter much smaller than the wavelength the two structures reveal quite different characteristics; the dielectric nanowire-on-metal has longer propagation distance, but only the metal nanowire-on-dielectric exhibits a mode size two fold smaller than the diffraction limit. The proposed hybrid structure may therefore be more suitable for realization of nanocavity lasers.
Keywords
Surface plasmons; Nanoscale waveguides; Nanocavity lasers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, "Dielectricloaded surface plasmon polariton waveguides on a finitewidth metal strip," Appl. Phys. Lett. 96, 063105-1-063105-3 (2010).   DOI
2 J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).   DOI
3 R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photon. 2, 496-500 (2008).   DOI
4 J. Zhang, L. Cai, W. Bai, and G. Song, "Hybrid waveguideplasmon resonances in gold pillar arrays on top of a dielectric waveguide," Opt. Lett. 35, 3408-3410 (2010).   DOI
5 D. Chen, "Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light," Appl. Opt. 49, 6868-6871 (2010).   DOI
6 Z. Fang, S. Huang, F. Lin, and X. Zhu, "Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide," Opt. Express 17, 20327-20332 (2009).   DOI
7 R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, "Plasmon Lasers at deep subwavelength scale," Nature 461, 629-632 (2009).   DOI
8 M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009).   DOI
9 X. Yang, Y. Liu, R. F. Ourton, X. Yin, and X. Zhang, "Optical forces in hybrid plasmonic waveguides," Nano Lett. 11, 321-328 (2011).   DOI
10 M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguide," Phys. Rev. Lett. 93, 137404-1-137404-4 (2004).   DOI
11 Z. Fang, C. Lin, R. Ma, S. Huang, and X. Zhu, "Planar plasmonic focusing and optical transport using CdS nanoribbon," ACS Nano 4, 75-82 (2010).   DOI
12 H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, "Compressing surface plasmons for nano-scale optical focusing," Opt. Express 17, 7519-7524 (2009).   DOI
13 Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, "Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration," Opt. Express 17, 21320-21325 (2009).   DOI
14 S. Randhawa, M. U. Gonzalez, J. Renger, S. Enoch, and R. Quidant, "Design and properties of dielectric surface plasmon Bragg mirrors," Opt. Express 18, 14496-14510 (2010).   DOI
15 X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, "Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits," Nano Lett. 9, 4515-4519 (2009).   DOI