Browse > Article
http://dx.doi.org/10.3807/KJOP.2011.22.4.179

Near Infrared Laser Based on Polymer Waveguide Bragg Grating  

Kim, Kyung-Jo (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University)
Son, Nam-Seon (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University)
Kim, Jun-Whee (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University)
Oh, Min-Cheol (Nano-Bio Photonics Lab., Department of Electrical Engineering, Pusan National University)
Publication Information
Korean Journal of Optics and Photonics / v.22, no.4, 2011 , pp. 179-183 More about this Journal
Abstract
An external cavity laser operating at near infrared wavelength is demonstrated by incorporating polymer waveguide Bragg reflectors. 3rd order Bragg grating and oversized rip waveguide structure were designed by using the effective index method and the transmission matrix method. The polymer waveguide was fabricated using polymer materials with refractive indices of 1.462 and 1.435 for the core and the cladding layers, respectively. The external feedback laser with 875-nm Bragg grating exhibits single mode lasing located at 850-nm wavelength with an output power of 0 dBm, a 20-dB bandwidth of 0.2 nm and a side mode suppression ratio of 40 dB.
Keywords
Polymeric optical waveguide; Bragg reflection grating; External cavity laser; NIR laser;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. K. Price, V. C. Elarde, and J. J. Coleman, "Widely tunable 850-nm metal-filled asymmetric cladding distributed Bragg reflector lasers," IEEE J. Quantum Electron. 42, 667-674 (2006).   DOI
2 Be. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, "Mechanically tunable conjugated polymer distributed feedback lasers," Appl. Phys. Lett. 97, 193303 (2010).   DOI
3 Y.-O. Noh, H.-J. Lee, J.-J. Ju, M.-S. Kim, S.-H. Oh, and M.-C. Oh, "Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings," Opt. Express 16, 18194-18201 (2008).   DOI
4 K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, "Flexible polymer waveguide tunable lasers," Opt. Express 18, 8392-8399 (2010).   DOI
5 R. Moosburger and K. Petermann, "4 ${\times}$ 4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998).   DOI
6 B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002).   DOI
7 D. Hradetzky, C. Mueller, and H. Reinecke, "Interferometric label-free biomolecular detection system," J. Opt. A: Pure Appl. Opt. 8, S360-S364 (2006).   DOI
8 J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C.Oh, "Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers," IEEE J. Select. Topics Quantum Electron. 4, 973-980 (2010).   DOI
9 S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1996).
10 L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, "Selfreferenced assay method for photonic crystal biosensors: application to small molecule analytes," Sens. Actuators B 120, 392-398 (2007).   DOI
11 H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006).   DOI
12 S. W. Lee, C.-S. Kim, and B.-M. Kim, "External line-cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).   DOI
13 F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, "Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides," Opt. Express 13, 1643-1650 (2005).   DOI