Browse > Article
http://dx.doi.org/10.3807/KJOP.2010.21.4.139

Theoretical Modeling of High Concentration Bismuth-based Erbium-doped Fiber Amplifier  

Shin, Jae-Hyun (School of Electrical and Computer Engineering, University of Seoul)
Jung, Min-Wan (School of Electrical and Computer Engineering, University of Seoul)
Lee, Ju-Han (School of Electrical and Computer Engineering, University of Seoul)
Publication Information
Korean Journal of Optics and Photonics / v.21, no.4, 2010 , pp. 139-145 More about this Journal
Abstract
A complete modeling of erbium-doped Bismuth-oxide fibers with a high doping concentration is presented. A 6-level amplifier system that incorporated clustering-induced concentration quenching, cooperative upconversion, pump excited state absorption (ESA), and signal ESA, was adopted for the modeling. The accuracy of the modeling was verified by comparing the calculated gain and noise figure with experimentally obtained ones.
Keywords
Bismuth oxide; Erbium-doped fiber amplifier; Homogeneous effect; Inhomogeneous effect; Modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. P. López-Barbero, W. A. Arellano-Espinoza, H. L. Fragnito, and H. E. Hernández-Figueroa, “Tellurite-based optical fiber amplifier analysis using the finite-element method,” Microw. Opt. Technol. Lett. 25, 103-107 (2000).   DOI
2 C. Jiang, W. Hu, and Q. Zeng, “Numerical analysis of concentration quenching model of $Er^{3+}$-doped phosphate fiber amplifier,” IEEE J. Quantum Electron. 39, 1266-1271 (2003).   DOI
3 E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, USA, 2002).
4 Asahi Glass company technical bulletin, http://www.agc.co.jp/english/biedf/bi5web.pdf.
5 S. Tanabe, N. Sugimoto, S. Ito, and T. Hanada, “Broad-band 1.5$\mu$m emission of $Er^{3+}$ ions in bismuth-based oxide glasses for potential WDM amplifier,” J. Lumin. 87-89, 670-672 (2000).   DOI
6 Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang, J. H. Kim, H. J. Seo, and N. Peyghambarian, “Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass,” J. Opt. Soc. Am. B 18, 1928-1934 (2001).   DOI
7 A. Mori, T. Sakamoto, K. Kobayashi, K. Shikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, and M. Shimizu, “1.58-$\mu$m broad-band Erbium-doped Tellurite fiber amplifier,” IEEE J. Lightwave Technol. 20, 794-799 (2002).
8 S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10, 283-295 (2004).   DOI
9 H. Hayashi, N. Sugimoto, and S. Tanabe, “High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations,” Opt. Fiber Technol. 12, 282-287 (2006).   DOI
10 H. Hayashi, S. Ohara, N. Sugimoto, and S. Tanabe, “Effects of Lanthanum and Boron addition on suppression of cooperative upconversion in Bismuth Oxide-based Erbiumdoped fibers,” Jpn. J. Appl. Phys. 46, 3452-3454 (2007).   DOI
11 H. Hayashi, S. Tanabe, and N. Sugimoto, “Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber,” J. Lumin. 128, 333-340 (2008).   DOI
12 J. H. Shin and J. H. Lee, “Investigation of signal excited state absorption in Bismuth-based Erbium-doped fiber amplifier,” J. Opt. Soc. Am. B 27, 1452-1457 (2010).   DOI
13 J. H. Shin and J. H. Lee, “Modeling of Bismuth-oxide based Erbium-doped fiber amplifier: considering concentration quenching effect,” Bulletin of KIEEME 23, 14-21 (2010).
14 C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers,” IEEE J. Lightwave Technol. 9, 147-154 (1991).   DOI
15 Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J.-L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009).   DOI
16 C. L. Chang, L. Wang, and Y. J. Chiang, “A dual pumped double-pass L-band EDFA with high gain and low noise,” Opt. Comm. 267, 108-112 (2006).   DOI
17 T. Sakamoto, K. Hattori, J. Kani, M. Fukutoku, M. Fukui, M. Jinno, and K. Oguchi, “Flat-gain operation of 1580 nm-band EDFA with gain variation of 0.2 dB over 1579-1592 nm,” Electron. Lett. 34, 1959-1961 (1998).   DOI
18 H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped raman amplifier,” IEEE Photon. Technol. Lett. 11, 647-649 (1999).   DOI