Browse > Article
http://dx.doi.org/10.3807/HKH.2008.19.6.429

Long-Range Surface Plasmon-Polariton Wavelength Filter based on Asymmetric Double-Electrode Structure  

Shim, Yu-Tae (Department of Physics, University of Hanyang)
Joo, Yang-Hyun (Department of Physics, University of Hanyang)
Song, Seok-Ho (Department of Physics, University of Hanyang)
Publication Information
Korean Journal of Optics and Photonics / v.19, no.6, 2008 , pp. 429-434 More about this Journal
Abstract
We propose a wavelength filter based on long-range surface plasmon-polaritons (LR-SPP) supported by a asymmetric doubleelectrode LR-SPP structure. For the case of the asymmetric double-layered LR-SPP waveguide, LR-SPPs exist with a much broader range of index mismatches between core and clad materials. Thus, the asymmetric double-electrode LR-SPP waveguide is adequate to form a plasmonic band-gap device as we report in this paper by studying Bragg-reflection wavelength filter based on it. The structure for wavelength filter operating telecommunications wavelength is designed by using the method of line (MoL) and the transfer matrix method. The fabricated device shows a relatively high extinction ratio of 50 dB with a bandwidth of 2 nm, and the performance is very consistent with numerical simulations.
Keywords
Surface plasmons; Surface plasmon-polariton waveguide; Wavelength filter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Yeh, Optical Waves in Layered Media (Wiley and Sons, New York, 1988)
2 H. Raether, “Surface Plasmon: on smooth and rough surfaces and on gratings,” (Springer-Verlag, London, UK, 1998)
3 T. Sterkenburgh and H. Franke, “Observastion of a long range surface mode with a polymer/silver/polymer multilayer,” J. Appl. Phys., vol. 81, pp. 1011-1013, 1997   DOI   ScienceOn
4 T. Nikolajsen, K. Leosson, and S. I. Bozehevolnyi, “Surface plasmon-polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett., vol. 85, no. 24, pp. 5833-5836, 2004   DOI   ScienceOn
5 S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment,” IEEE J. Quantum Electron., vol. 41, no. 12, pp. 1480-1491, 2005   DOI   ScienceOn
6 E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev., vol. 182, no. 2, pp. 539-554, 1969   DOI
7 F. A. Burton and S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmonplaritons,” J. Lightwave Tech., vol. 8, no. 12, pp. 1843-1849, 1990   DOI   ScienceOn
8 P. Berini, “Plasmon-polariton modes guided by a metal film of finite width,” Opt. Lett., vol. 24, no. 15, pp. 1011-1013, 1999   DOI
9 T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozehevolnyi, “Polymer-based surface plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett., vol. 82, no. 5, pp. 668-670, 2003   DOI   ScienceOn
10 J. Yoon, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface,” J. Appl. Phys., vol. 94, no. 1, pp. 123-129, 2003   DOI   ScienceOn
11 Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett., vol. 92, no. 16, pp. 161103-1-161103-3, 2008   DOI   ScienceOn
12 A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg Gratings for Long-Range Surface Plasmon Polaritons,” J. Lightwave Tech., vol. 24, no. 2, pp. 912-918, 2006   DOI   ScienceOn
13 G. I. Stegeman and J. J. Bruke, “Long-range surface plasmons in electrode structures,” Appl. Phys. Lett., vol. 43, no. 3, pp. 221-223, 1983   DOI
14 H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface Plasmon polaritons,” Appl. Phys. Lett., vol. 88, no. 1, pp. 011110-1-011110-3, 2006   DOI
15 S. Jette-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmonpolariton waveguides,” J. Opt. Soc. Am. A, vol. 23, no. 7, pp. 1757-1767, 2006   DOI   ScienceOn
16 P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, no. 12, pp. 4370-4379, 1972   DOI
17 R. Kashyap, Fiber Bragg Grating (Academic Press, New York, 1999)