Browse > Article
http://dx.doi.org/10.3807/KJOP.2006.17.3.278

Electrooptic Modulator with InAs Quantum Dots  

Ok, Seong-Hae (School of electronics and electrical engineering, Chung-Ang University)
Moon, Yon-Tae (School of electronics and electrical engineering, Chung-Ang University)
Choi, Young-Wan (School of electronics and electrical engineering, Chung-Ang University)
Son, Chang-Wan (Photonics Research Center, Korea Institute of Science and Technology)
Lee, Seok (Photonics Research Center, Korea Institute of Science and Technology)
Woo, Deok-Ha (Photonics Research Center, Korea Institute of Science and Technology)
Byun, Young-Tae (Photonics Research Center, Korea Institute of Science and Technology)
Jhon, Young-Min (Photonics Research Center, Korea Institute of Science and Technology)
Kim, Sun-Ho (Photonics Research Center, Korea Institute of Science and Technology)
Yi, Jong-Chang (School of electronics and electrical engineering, Hong-Ik University)
Oh, Jae-Eung (Department electronic, electrical, control and Instrumentation engineering, Han-Yang University)
Publication Information
Korean Journal of Optics and Photonics / v.17, no.3, 2006 , pp. 278-284 More about this Journal
Abstract
We have fabricated and measured electrooptic modulator using coupled stack InAs/InGaAs quantum dots. The height of the quantum dot is 16 nm and quantum dots are stacked including an InGaAs capping layer. The peak wavelength of photoluminescence is 1260 nm at room temperature and 1158 nm at 12 K. The operation characteristics of the quantum dots show high modulation efficiency of electrooptic modulator at 1550 nm compared to that of existing III-V bulk and MQW type semiconductor. The measured switching voltage ($V\pi$) is 540 and 600 mV, for TE mode and TM mode, respectively. From the results, the modulation efficiency can be determined as 333.3 and $300^{\circ}/V{\cdot}mm$ for TE and TM modes. The results reported here may lead to the design and fabrication of a novel electrooptic modulator with low switching voltage and high efficiency.
Keywords
Quantum dots; Electrooptic modulator; Optoelectronics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Sakaki, 'Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures,' Jpn. J. Appl. Phys., vol. 19, no. 12, L735-L738, 1980   DOI
2 Z. Alferov, 'Double heterostructure lasers: early days and future perspectives,' IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 832-840, 2000   DOI   ScienceOn
3 G. Yusa and H. Sakaki, 'Trapping of photogenerated carriers by InAs quantum dots and persistent photoconductivity in novel GaAs/n-AlGaAs field-effect transistor structures,' Appl. Phys. Lett., vol. 70, no. 3, pp. 345-347, 1997   DOI   ScienceOn
4 S. H. Ok, S. J. Yoon, M. J. Koo, Y. W. Choi, J. Y. Lim, J. H. Kim, S. Lee, D. H. Woo, Y. T. Byun. 'Analysis of traveling-wave electroabsorption modulator using FDTD method,' in The 4th Korea-Japan Joint Workshop on Microwave and Millimeter-Wave Photonics, Daejeon, Korea, pp. 65-68, 2003
5 K. Wakita, I. Kotaka, H. Asai, 'High-speed InGaAlAs/ nAlAs multiple quantum well electrooptic phase modulators with bandwidth in excess of 20 GHz,' IEEE Trans. Photon. Techn. Lett., vol. 4, no. 1, pp. 29-31, 1992   DOI   ScienceOn
6 Y. T. Byun, K. H. Park, S. H. Kim, S. S. Choi, J. C. Yi, and T. K. Lim, 'Efficient single-mode GaAs/AlGaAs W waveguide phase modulator with a low propagation loss,' Appl. Opt., vol. 37, no. 3, pp. 496-501, 1998   DOI
7 H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, 'Experimental demonstration of swept-carrier time-domain optical memory', Opt. Lett., vol. 20, no. 1, pp. 91, 1995   DOI   ScienceOn
8 M. Fetterman, C. P. Chao, and S. R. Forrest, 'abrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 ${\mu}m$ wavelength,' IEEE Trans. Photon. Techn. Lett., vol. 8, no. 1, pp. 69-71, 1996   DOI   ScienceOn
9 C. Rolland, 'InGaAsP-based Mach-Zehnder modulators for high-speed transmission systems,' in Optical Fiber Communication Conference '98, Optical Society of America, San Jose, USA, pp. 283-284. 1998
10 A. J. Shields, M. P. O'Sullivanb, I. Farrer, D. A. Ritchie, R. A. Hogg, M.L. Leadbeater, C. E. Norman, and M. Pepperb, 'Detection of single photons using a field-effect transistor gated by a layer of quantum dots,' Appl. Phys. Lett., vol. 76, no. 25, pp. 3673-3675, 2000   DOI   ScienceOn
11 H. K. Tsang, J. B. D. Soole, H. P. LeBlanc, R. Bhat, and M. A. Koza, I. H. White, 'Efficient InGaAsP/InP multiple quantum well waveguide optical phase modulator,' Appl. Phys. Lett., vol. 57, no. 22, pp. 2285-2287, 1990   DOI
12 S. S. Lee, R, V. Ramaswamy, and V. S. Sundaram, 'Analysis and design of high-speed high-efficiency GaAslGaAs double-heterostructure waveguide phase modulator,' IEEE J. Quantum Elec., vol. 27, no. 3, pp. 726-736, 1991   DOI   ScienceOn
13 U. Koren, T. L. Koch, H. presting, and B. I. Miller, 'InGaAs/InP multiple quantum well waveguide phase modulator,' Appl. Phys. Lett., vol 50, no. 7, 368-370, 1987   DOI
14 J. F. Vinchant, J. A Caviles, M. Erman, P. Jarry, and M. Renaud, 'InP/GaInAsP guided-wave phase modulators based on carrier induced effects: theory and experiment,' IEEE J. Light wave Technol., vol. 10, no.1, pp. 63-70, 1992   DOI   ScienceOn
15 R. Spickermann, S. R. Sakamoto, M. G. Peters, and N. Dagli, 'aAs/AlGaAs travelling wave electro-optic modulator with an electrical bandwidth > 40 GHz,' Electron. Lett., vol. 32, no. 12, pp. 1095-1096, 1996   DOI   ScienceOn