Browse > Article

My Experience in Shell Finite Element Development  

Lee, Pil-Seung (KAIST 기계공학과)
Publication Information
Computational Structural Engineering / v.34, no.2, 2021 , pp. 5-11 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bathe KJ, Chapelle D, Lee PS. A shell problem 'highly-sensitive' to thickness changes. International Journal for Numerical Methods in Engineering, 57(8), 1039-1052, 2003.   DOI
2 PS Lee, Development, success and vision in FEM (FEM의 발전, 성공과 비전), 한국전산구조공학회 학회지 Vol. 33 No.2, 2020.
3 Choi CK, Lee PS, Park YM. Defect-free 4-node flat shell element: NMS-4F element. Structural Engineering and Mechanics, 8(2), 207-231, 1999.   DOI
4 Lee PS, Bathe KJ. On the asymptotic behavior of shell structures and the evaluation in finite element solutions. Computers & Structures, 80(3-4), 235-255, 2002.   DOI
5 Bathe KJ, Lee PS, Hiller JF. Towards improving the MITC9 shell element. Computers & Structures, 81(8-11), 477-489, 2003.   DOI
6 Lee PS, Bathe KJ. Development of MITC isotropic triangular shell finite elements. Computers & Structures, 82(11-12), 945-962, 2004.   DOI
7 Lee PS, Bathe KJ. Insight into finite element shell discretizations by use of the "basic shell mathematical model." Computers & Structures, 83(1), 69-90, 2005.   DOI
8 Lee Y, Yoon K, Lee PS. Improving the MITC3 shell finite element by using the Hellinger-Reissner principle. Computers & Structures, 110-111, 93-106, 2012.   DOI
9 Lee PS, Noh HC, Bathe KJ. Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns. Computers & Structures, 85(7-8), 404-418, 2007.   DOI
10 Jeon HM, Lee PS, Bathe KJ. The MITC3 shell finite element enriched by interpolation covers. Computers & Structures, 134, 128-142, 2014.   DOI
11 Lee Y, Lee PS, Bathe KJ. The MITC3+ shell finite element and its performance. Computers & Structures, 138, 12-23, 2014.   DOI
12 Lee Y, Jeon HM, Lee PS, Bathe KJ. The modal behavior of the MITC3+ triangular shell element. Computers & Structures, 153, 148-164, 2015.   DOI
13 Lee PS, Bathe KJ. The quadratic MITC plate and MITC shell elements in plate bending. Advances in Engineering Software, 41(5), 712-728, 2010.   DOI
14 Bathe KJ, Lee PS. Measuring the convergence behavior of shell analysis schemes. Computers & Structures, 89(3-4), 285-301, 2011.   DOI
15 Ko Y, Lee PS, Bathe KJ. The MITC4+ shell element and its performance. Computers & Structures, 169, 57-68, 2016.   DOI
16 Ko Y, Lee Y, Lee PS, Bathe KJ. Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Computers & Structures, 193, 187-206, 2017.   DOI
17 Ko Y, Lee PS, Bathe KJ. A new MITC4+ shell element. Computers & Structures, 182, 404-418. 2017.   DOI
18 Ko Y, Lee PS, Bathe KJ. The MITC4+ shell element in geometric nonlinear analysis. Computers & Structures, 185, 1-14. 2017.   DOI
19 Ko Y, Lee PS, Bathe KJ. A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Computers & Structures, 192, 34-49, 2017.   DOI
20 Jun H, Yoon K, Lee PS, Bathe KJ. The MITC3+ shell element enriched in membrane displacements by interpolation cover. Computer Methods in Applied Mechanics and Engineering, 337, 458-480, 2018.   DOI
21 Lee C, Lee PS. The strain-smoothed MITC3+ shell element. Computers & Structures, 223, 106096, 2019.   DOI
22 Jeon HM, Lee Y, Lee PS, Bathe KJ. The MITC3+ shell element in geometric nonlinear analysis. Computers & Structures, 146, 91-104, 2015.   DOI
23 Ko Y, Lee PS. A 6-node triangular solid-shell element for linear and nonlinear analysis. International Journal for Numerical Methods in Engineering, 111(13), 1203-1230. 2017.   DOI