Browse > Article
http://dx.doi.org/10.12651/JSR.2021.10.1.078

First record of Heterorhabdus papilliger(Calanoida, Heterorhabdidae) from Korean waters based on morphological and molecular features  

Lee, Seok Ju (Marine Biological Resource Center)
Jeong, Man-Ki (Fishery Resource Management Institute based on ICT, Chonnam National University)
Seo, Min Ho (Marine Ecology Research Center)
Choi, Jang Han (Department of Environmental Oceanography, Chonnam National University)
Soh, Ho Young (Department of Ocean Integrated Science, Chonnam National University)
Publication Information
Journal of Species Research / v.10, no.1, 2021 , pp. 78-85 More about this Journal
Abstract
Heterorhabdus papilliger (Claus, 1863) is newly reported from the Tsushima Warm Current realm of the southern Korean waters. Its morphological diagnostic characteristics generally agreed well with the original description and the previous records of H. papilliger. The female of H. papilliger can be recognized by the genital somite, which in lateral view has a more or less rounded genital prominence and an uninflated posterior ventral margin; the second exopodal segment of male right leg 5 with the medial projection with a large, rounded, plumose proximal lobe, and a poorly developed distal lobe. The genetic difference for the partial mtCOI gene between Korean specimens and H. papilliger from Spain and Japan of the same clade is 0.4%, while the difference between Korean specimens is 0.5%. However, the interspecific difference for the mtCOI gene between H. papilliger from the Korean waters and the other Heterorhabdus species is in the range of 14.7-20.8%, suggesting that the former is a valid species.
Keywords
Copepoda; DNA barcoding; mtCOI gene; Korean waters; Tsushima warm current;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sars, G.O. 1903. An account of the Crustacea of Norway with Short Descriptions and Figures of all the Species. Bergen Museum, Bergen.
2 Sars, G.O. 1925. Copepodes particulierement bathypelagique provenant des carnpagnes scientifique du Prince Albert 1er de Monaco. Resultats des Campagnes Scientifiques accomplies par le Antarctic Metridia Prince Albert I, Monaco.
3 Soh, H.Y., S.W. Kwon, W. Lee and Y.H. Yoon. 2012. A new Pseudodiaptomus(Copepoda, Calanoida) from Korea supported by molecular data. Zootaxa 3368(1):229-224.   DOI
4 Walter, T.C. and G.A. Boxshall. 2020. World of Copepods database. Heterorhabdidae Sars G.O., 1902. [http://www.marinespecies.org/aphia.php?p=taxdetails&id=104087/,accessed 05 October 2020].
5 Wolfenden, R.N. 1911. Die marinen Copepoden der deutschen Sudpolar-Expedition 1901-1903. 2. Die pelagischen Copepoden der West-wind drift und des sudlichen Eismeers mit Beschreibung mehrerer neuer Arten aus dem Atlantischen Ozean. Deutsche Sudpolar-Expedition 12(2):181-380.
6 Folmer, O., M. Black, W. Hoeh, R. Lutz and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan inver-tebrates. Molecular Marine Biology and Biotechnology 3(5):294-299.
7 Giesbrecht, W. 1892. Systematik und Faunistik der pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte: Fauna und Flora des Golfes von Neapel, Berlin: Verlag Von R Friedlander and Shon, Berlin.
8 Giesbrecht, W. 1902. Zoologie: Copepoden. Resultats du voyage du S.Y. Belgica en 1897-1898-1899. Rapports Scientifiques, Buschmann, Anvers.
9 Giesbrecht, W. and O. Schmeil. 1898. Copepoda: I. Gymnoplea. Verlag Von R Friedlander and Shon, Berlin.
10 Harding, G.C.H. 1974. The food of deep-sea copepods. Journal of the Marine Biological Association of the United Kingdom 54(1):141-155.   DOI
11 Hopkins, T.L. 1985. Food web of an Antarctic midwater ecosystem. Marine Biology 89(2):197-212.   DOI
12 Huys, R. and G.A. Boxshall. 1991. Copepod evolution. Ray Society, London.
13 Jeong, H.G., H.Y. Soh and H.L. Suh. 2014. Morphological and genetic differentiation of heteromorphy in Labidocera rotunda (Copepoda, Calanoida, Pontellidae). Zootaxa 3764(2):181-191.   DOI
14 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2):111-120.   DOI
15 Bradford-Grieve, J.M. 1999. The marine fauna of New Zealand: Pelagic calanoid Copepoda: Bathypontiidae, Arietellidae, Augaptilidae, Heterorhabdidae, Lucicutiidae, Metridinidae, Phyllopodidae, Centropagidae, Pseudodiaptomidae, Temoridae, Candaciidae, Pontellidae, Sulcanidae, Acartiidae, Tortanidae. NIWA Biodiversity Memoirs 111:70-92.
16 Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology Evolution 33(7):1870-1874.   DOI
17 Mulyadi, M.D. 2004. Calanoid Copepods in Indonesian Waters. Research Center for Biology, Indonesia Institute of Sciences, Bogor.
18 Ohtsuka, S., H.Y. Soh and S. Nishida. 1997. Evolutionary switching from suspension feeding to carnivory in the cala - noid family Heterorhabdidae (Copepoda). Journal Crustacean Biology 17(4):577-595.   DOI
19 Claus, C. 1863. Die frei lebenden Copepoden mit besonderer Berucksichtigung der Fauna Deutschlands, der Nordsee und des Mittelmeeres. Verlag Von Wilhelm Engelmann. Leipzig.
20 Park, T. 1968. Calanoid copepods from the central North Pacific Ocean. Fishery Bulletin 66(3):527-572, pls. 1-13.
21 Park, T. 2000. Taxonomy and distribution of the calanoid copepod Family Heterorhabdidae. Bulletin of the Scripps Institution of Oceanography, University of California 31:1-269.
22 Sars, G.O. 1902. An Account of the Crustacea of Norway with Short Descriptions and Figures of all the Species. Bergen Museum, Bergen.
23 Sewell, R.B.S. 1932. The Copepoda of Indian seas. Calanoida. Memoirs of the Indian Museum 10:223-407, text figs. 82-131.