Browse > Article
http://dx.doi.org/10.7732/kjpr.2021.34.6.527

Antioxidant Activities and Total Phenolic Contents of Three Legumes  

Lee, Kyung Jun (Honam National Institute of Biological Resources)
Kim, Ga-Hee (CES Technical Services Dept., Macrogen, Inc.)
Lee, Gi-An (Rural Development Administration)
Lee, Jung-Ro (Rural Development Administration)
Cho, Gyu-Taek (Rural Development Administration)
Ma, Kyung-Ho (Herbal Crop Research Division, NIHHS, RDA)
Lee, Sookyeong (Rural Development Administration)
Publication Information
Korean Journal of Plant Resources / v.34, no.6, 2021 , pp. 527-535 More about this Journal
Abstract
Legumes have been important components of the human diet. They contain not only protein, starch, and dietary fiber, but also various phenolic compounds such as flavonoids and phenolic acids. The importance of phenolic compounds to human health is well known due to their antioxidant activities. In this study, three legumes (adzuki beans, common beans, and black soybeans) frequently cultivated in Korea were evaluated for their total phenolic content (TPC) and antioxidant activities using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis (3-ethylbenzothiazoline 6-sulfonate)), and FRAP (ferric reducing antioxidant potential) assays. In addition, correlations between agricultural traits and antioxidant activities of these three legumes were analyzed. Antioxidant activities assessed by DPPH, ABTS, and FRAP assays and TPC showed wide variations among legumes types and accessions. Among the three legumes, adzuki beans showed higher TPC and antioxidant activity than the other two legumes. In correlation analysis, seed size showed negative correlations with antioxidant activities and TPC. In principal component analysis and hierarchical clustering analysis, each of the three legumes was clearly separate. Results of this study can be used as basic information for developing functional materials for each legume. They can also help us understand the overall antioxidant activity of the three legumes.
Keywords
Adzuki bean; Antioxidant activity; Common bean; Soybean; Total phenolic content;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Amarowicz, R. and B. Raab. 1997. Antioxidative activity of leguminous seed extracts evaluated by chemiluminescence methods. Z. Naturforsch. C 52:709-712.   DOI
2 Ariza-Nieto, M., M.W. Blair, R.M. Welch and R.P. Glahn. 2007. Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J. Agri. Food Chem. 55:7950-7956.   DOI
3 Blair, M.W., P. Izquierdo, C. Astudillo and M.A. Grusak. 2013. A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front. Plant Sci. 4:275-275.   DOI
4 Choi, J.-H.C., M. Lee, H.J. Kim, J.I.K. Kwon and Y. Lee. 2017. Effects of black soybean and fermented black soybean extracts on proliferation of human follicle dermal papilla cells. Kor. Soc. Food Sci. Nutr. 46:671-680.
5 Duenas, M., T. Hernandez and I. Estrella. 2006. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 98:95-103.   DOI
6 Hammer, O., D.A.T. Harper and P.D. Ryan. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 4:1-9.
7 Lee, H., M. Yu, H.-J. Kim, J.S. Sung, H.S. Jeong and J. Lee. 2020. Antioxidant and anti-diabetic activities of ethanol extracts of cereal grains and legumes. Kor. Soc. Food Sci. Nutr. 49:323-328.   DOI
8 Sim, U., S. Lee, S.H. Lee, Y. Choi and J.L. Lee. 2018. Change in vitamin E and K contents and true retention of cereal and legume by cooking. Kor. Soc. Food Sci. Nutr. 47:675-681.   DOI
9 Thaipong, K., U., Boonprakob, K., Crosby, L., Cisneros-Zevallos and D. Hawkins Byrne. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19:669-675.   DOI
10 Harlen, W.C. and I.R.A.P. Jati. 2018. Chapter 8 - Antioxidant activity of anthocyanins in common legume grains: In Polyphenols: Mechanisms of action in human health and disease, Elsevier: USA. pp. 81-92.
11 Katalinic, V., M. Milos, T. Kulisic and M. Jukic. 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94:550-557.   DOI
12 Amarowicz, R., A. Troszynska, N. Baryulko-Pikielna and F. Shahidi. 2004. Polyphenolics extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipids 11: 278-286.   DOI
13 Amarowicz, R. and R.B. Pegg. 2008. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110:865-878.   DOI
14 Balasundram, N., K. Sundram and S. Samman. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99:191-203.   DOI
15 Kim, E.H., H.K. Song, Y.J.P. Park, J.R. Lee, M.Y. Kim and I.-M.C. Chung. 2011. Determination of phenolic compounds in adzuki bean (Vigna angularis) germplasm. Kor. J. Crop Sci. 56: 375-384.   DOI
16 Heim, K.E., A.R. Tagliaferro and D.J. Bobilya. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relation-ships. J. Nutr. Biochem. 13:572-584.   DOI
17 Berghofer, E., B. Grzeskowiak, N. Mundigler, W. Sentall and J. Walcak. 2009. Antioxidative properties of faba bean, soybean and oat tempeh. Int. J. Food Sci. Nutr. 49: 45-54.   DOI
18 Bors, W. and C. Michel. 2002. Chemistry of the antioxidant effect of polyphenols. Ann. N. Y. Acad. Sci. 957:57-69.   DOI
19 Cardador-Martinez, A., G. Loarca-Pina and B.D. Oomah. 2002. Antioxidant activity in common beans (Phaseolus vulgaris L.). J. Agri. Food Chem. 50:6975-6980.   DOI
20 Choi, Y.-M., H. Yoon, S. Lee, H.-C. Ko, M.-J. Shin, M.-C. Lee, S. Oh and K. T. Desta. 2020. Comparison of isoflavone composition and content in seeds of soybean (Glycine max (L.) Merrill) germplasms with different seed coat colors and days to maturity. Kor. J. Plant Res. 33:558-577.   DOI
21 Fang, Y.Z., S. Yang and G. Wu. 2002. Free radicals, antioxidants, and nutrition. Nutrition 18:872-879.   DOI
22 Gowri, S. and K. Vasantha. 2010. Free radical scavenging and antioxidant activity of leaves from agathi (Sesbania grandiflora) (L.) Pers. Amer. Eur. J. Sci. Res. 5:114-119.
23 KOSIS (Korean Statistical Information Service) (2021). www. kosis.kr. Available online: (accessed on 05 July 2021).
24 Lee, K.J., J.-R. Lee, K.-H. Ma, Y.-H. Cho, G.-A. Lee and J.-W. Chung. 2016. Anthocyanin and isoflavone contents in Korean black soybean landraces and their antioxidant activities. Plant Breed. Biotech. 4:441-452.   DOI
25 Lee, K.J., M.-J. Shin, G.-T. Cho, G.-A. Lee, K.-H. Ma, J.-W. Chung and J.-R. Lee. 2018. Evaluation of phytochemical contents and antioxidant activity of Korean common bean (Phaseolus vulgaris L) landraces. Kor. Soc. Int. Agric. 30:1-13.   DOI
26 Kwak, J.H.K., Y.N.J. Jo, J.H. Jeong, H.J. Kim, S.I. Jin, S.-G. Choi and H.J. Heo. 2013. Protective effects of black soybean seed coat extracts against oxidative stress-induced neurotoxicity. Kor. J. Food Sci. Technol. 45:257-261.   DOI
27 Li, H.-B., C.-C. Wong, K.-W. Cheng and F. Chen. 2008. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT - Food Sci. Technol. 41:385-390.   DOI
28 Lin, D., M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, M. Kong, L. Li, Q. Zhang, Y. Liu, H. Chen, W. Qin, H. Wu and S. Chen. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21:1374.   DOI
29 Parr, A.J. and G.P. Bolwell. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Sci. Food Agri. 80:985-1012.   DOI
30 Dudonne, S., X. Vitrac, P. Coutiere, M. Woillez and J.M. Merillon. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agri. Food Chem. 57:1768-1774.   DOI
31 Lee, K.J., K.-H. Ma, Y.-H. Cho, J.-R. Lee, G.-A. Lee and J.-W. Chung. 2017. Phytochemical distribution and antioxidant activities of Korean adzuki bean (Vigna angularis) landraces. J. Crop Sci. Biotech. 20:205-212.   DOI
32 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (accessed on 05 July 2021).
33 Rice-Evans, C.A., N.J. Miller and G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933-956.   DOI
34 Singh, B., J.P. Singh, A. Kaur and N. Singh. 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 101:1-16.   DOI
35 Sung, J.S.S., S.B.S. Song, J.Y. Kim, Y.J. An, J.E. Park, M.E. Choe, J.H. Chu, T.J. Ha and S.I. Han. 2020. Variation in physicochemical characteristics and antioxidant activities of small redbean cultivars. Kor. J. Crop Sci. 65:231-240.   DOI
36 Velderrain-Rodriguez, G.R., H. Palafox-Carlos, A. Wall-Medrano, J.F. Ayala-Zavala, C.Y.O. Chen, M. Robles-Sanchez, H. Astiazaran-Garcia, E. Alvarez-Parrilla and G.A. Gonzalez-Aguilar. 2014. Phenolic compounds: their journey after intake. Food Funct. 5:189-197.   DOI
37 Xu, B. and K.-C. Chang. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72:S159-S166.   DOI