Browse > Article
http://dx.doi.org/10.7732/kjpr.2021.34.3.216

The Ameliorative Effect of Rubi Fructus on DSS-induced Colitis in Mice  

Myung, Noh-Yil (Department of Oriental Medicine and Healthcare, Wonkwang Digital University)
Publication Information
Korean Journal of Plant Resources / v.34, no.3, 2021 , pp. 216-222 More about this Journal
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease and a chronic gastrointestinal disorder. Rubi Fructus (RF), the fruit of Rubus coreanus Miquel, is known to exert several pharmacological effects including anti-oxidative, anti-obesity and anti-inflammatory properties. However, the improving effect and mechanism of RF on intestinal inflammation is not been fully understood. The purpose of this study was to investigate the regulatory effect of RF on dextran sulfate sodium (DSS)-induced colitis in mice. We evaluated the effects of RF on DSS-induced clinical signs by analyzing weight loss and colon length. The inhibitory effects of RF on inflammatory mediators such as prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, as well as the activation of nuclear factor-κB (NF-κB), were determined in colitis tissue. Our data indicated that mice treated with DSS showed clinical symptoms of colitis, including weight loss, colon length decrease and diarrhea. However, we observed that RF treatment significantly improved these clinical symptoms of weight loss, colon length decrease and diarrhea induced by DSS. RF inhibited the enhanced levels of COX-2 and PGE2 caused by DSS. We also showed that the anti-inflammatory mechanism of RF by suppressing the activation of NF-kB in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from RF for UC treatment.
Keywords
Dextran sulfate sodium; Nuclear factor-${\kappa}B$; Rubi fructus; Ulcerative colitis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agoff, S.N., T.A. Brentnall, D.A. Crispin, S.L. Taylor, S. Raaka, R.C. Haggitt, M.W. Reed, I.A. Afonina, P.S. Rabinovitch, A.C. Stevens, Z. Feng and M.P. Bronner. 2000. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am. J. Pathol. 157:737-745.   DOI
2 Ardizzone, S. and P.G. Bianchi. 2005. Biologic therapy for inflammatory bowel disease. Drugs 65:2253-2286.   DOI
3 Atreya, I., R. Atreya and M.F. Neurath. 2008. NF-kappa B in inflammatory bowel disease. J. Intern. Med. 263:591-596.   DOI
4 Baumgart, D.C. and S.R. Carding. 2007. Inflammatory bowel disease: Cause and immunobiology. Lancet 369:1627-1640.   DOI
5 Danese, S., M. Sans and C. Fiocchi. 2004. Inflammatory bowel disease; the role of environmental factors. Autoimmun. Rev. 3:394-400.   DOI
6 Ferrer, M.D., C. Busquets-Cortes, X. Capo, S. Tejada, J.A. Tur, A. Pons and A. Sureda. 2019. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem. 26:3225-3241.   DOI
7 Hendrickson, B.A., R. Gokhale and J.H. Cho. 2002. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol. Rev. 15:79-94.   DOI
8 Periasamy, S., W.H. Wu, S.P. Chien, C.T. Liu and M.Y. Liu. 2020. Dietary Ziziphus jujuba fruit attenuates colitis-associated tumorigenesis: A pivotal role of the NF-kappaB/IL-6/JAK1/STAT3 pathway. Nutr. Cancer. 72:120-132.   DOI
9 Domenech, E. 2006. Inflammatory bowel disease: Current therapeutic options. Digestion 73:67-76.   DOI
10 Jeong, M.Y., H.L. Kim, J. Park, Y. Jung, D.H. Youn, J.H. Lee, J.S. Jin, H.S. So, R. Park, S.H. Kim, S.J. Kim, S.H. Hong and J.Y. Um. 2015. Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro. Int. J. Obes. (Lond). 39:456-464.   DOI
11 Nam, M.K., H.R. Choi, J.S. Cho, S.M. Cho, K.C. Ha, T.H. Kim, H.Y. Ryu and Y.I. Lee. 2014. Inhibitory effects of Rubi Fructus extracts on hepatic steatosis development in high-fat diet-induced obese mice. Mol. Med. Rep. 10:1821-1827.   DOI
12 Jung, S.H., H.Y. Yu, J.H. Seo, Y.J. Lee and M.W. Han. 2021. A study on the comparison of chemical characterization and ellagic acid content between distribution Bokbunja and Korean Native Bokbunja. Korean J. Plant Res. 34:177-185.   DOI
13 Li, Y., C. Soendergaard, F.H. Bergenheim, D.M. Aronoff, G. Milne, L.B. Riis, J.B. Seidelin, K.B. Jensen and O.H. Nielsen. 2018. COX-2-PGE(2) signaling impairs intestinal epithelial regeneration and associates with TNF inhibitor responsiveness in ulcerative colitis. EBioMedicine 36:497-507.   DOI
14 Lin, X., Q. Sun, L. Zhou, M. He, X. Dong, M. Lai, M. Liu, Y. Su, C. Jia, Z. Han, S. Liu, H. Zheng, Y. Jiang, H. Ling, M. Li, J. Chen, Z. Zou and X. Bai. 2018. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal. Immunol. 11:1663-1673.   DOI
15 Roberts, P.J., K. Morgan, R. Miller, J.O. Hunter and S.J. Middleton. 2001. Neuronal COX-2 expression in human myenteric plexus in active inflammatory bowel disease. Gut 48:468-472.   DOI
16 Sandborn, W.J. and S.R. Targan. 2002. Biologic therapy of inflammatory bowel disease. Gastroenterology 122:1592-1608.   DOI
17 Tak, P.P. and G.S. Firestein. 2001. NF-κB: A key role in inflammatory disease. J. Clin. Invest. 107:7-11.   DOI
18 Skupsky, J., S. Sabui, M. Hwang, M. Nakasaki, M.D. Cahalan and H.M. Said. 2020. Biotin supplementation ameliorates murine colitis by preventing NF-kappaB activation. Cell. Mol. Gastroenterol. Hepatol. 9:557-567.   DOI
19 Hudcovic, T., R. Stepankova, J. Cebra and H. TlaskalovaHogenova. 2001. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbio. 46:565-572.   DOI
20 Ramakers, J.D., M.I. Verstege, G. Thuijls, A.A. Te Velde, R.P. Mensink and J. Plat. 2007. The PPARgamma agonist rosiglitazone impairs colonic inflammation in mice with experimental colitis. J. Clin. Immunol. 27:275-283.   DOI
21 He, J.M., S.C. Chen, R.P. Li, L.X. Yuan, J.M. Bao and M.L. Guo. 2015. Suppression of nuclear factor-kappa B and mitogen-activated protein kinase signalling pathways by goshonoside-F5 extracted from Rubi Fructus. Int. Immunopharmacol. 24:182-190.   DOI
22 Rogler, G., K. Brand, D. Vogl, S. Page, R. Hofmeister, T. Andus, R. Knuechel, P.A. Baeuerle, J. Scholmerich and V. Gross. 1998. Nuclear factor kappa B is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:537-569.
23 Tsuge, K., T. Inazumi, A. Shimamoto and Y. Sugimoto. 2019. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. 2019. Int. Immunol. 31:597-606.   DOI
24 Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12:1295-1309.   DOI
25 Yashiro, M. 2014. Ulcerative colitis-associated colorectal cancer. World. J. Gastroenterol. 20:16389-16397.   DOI