Browse > Article
http://dx.doi.org/10.7732/kjpr.2018.31.6.704

Changes in Bioactive Compounds and Antioxidant Capacity of Coffee under Different Roasting Conditions  

Song, Jae Lim (School of Applied Bioscience, Kyungpook National University)
Asare, Theophilus Siaw (Regional Department of Food and Agriculture)
Kang, Mi Young (Department of Food Science and Nutrition, Kyungpook National University)
Lee, Sang Chul (School of Applied Bioscience, Kyungpook National University)
Publication Information
Korean Journal of Plant Resources / v.31, no.6, 2018 , pp. 704-713 More about this Journal
Abstract
Roasting has revealed coffee's potentials as a good source of bioactive compounds. This study was done to investigate the quantitative presence and activity of bioactive compounds including caffeine, chlorogenic acid (CGA), amino acids, and antioxidant capacity on Coffea arabica L. (Guatemala finca San Sebastian) and C. robusta L. (India Azad Hind). Analysis was performed on Green Bean (GB) Medium-Light (ML), Medium (ME) and Medium-Dark (MD) samples of both varieties. From the results, caffeine content was highest in ME samples of both varieties. GB samples of both varieties had high CGA content which decreased after increasing roasting time and temperature. Most amino acids in GB samples was highest, however, glutamic acid, valine, tyrosine, isoleucine, leucine and phenylalanine had highest quantitative increase in ME samples for both varieties. $IC_{50}$ of DPPH and ABTS radical scavenging activity was highest in ML samples of both varieties. $IC_{50}$ of reducing power and total phenolic content was highest in GB sample of both varieties but decreased after increasing roasting conditions. Generally Robusta had the highest quantity of bioactive compounds and antioxidant activity. From this study, the optimal roasting condition for coffee is ME above which there is a significant reduction of bioactive compounds and antioxidant activity.
Keywords
Antioxidant activity; Bioactive compounds; Coffea arabica; Coffee roasting; C. robusta; Maillard reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lindsay, J., D. Laurin, R. Verreault, R. Hebert, B. Helliwell, G.B. Hill and I. McDowell. 2002. Risk factors for alzheimer's disease: a prospective analysis from the canadian study of health and aging. Am J Epidemiol. 156:445-453.   DOI
2 Lozano, J.E. and A. Ibarz. 1997. Colour changes in concentrated fruit pulps during heating at high temperatures. J. Food. Eng. 31: 365-373.   DOI
3 Montavon, P., A.F. Mauron and E. Duruz. 2003. Changes in green coffee protein profiles during roasting. J. Agric. Food Chem. 51:2335-2343.   DOI
4 Moon, J.K. and T. Shibamoto. 2010. Formation of volatile chemicals from thermal degradation of less volatile coffee components: quinic acid, caffeic acid, and chlorogenic acid. J. Agric. Food Chem. 58:5465-5470.   DOI
5 Nunes, F.M. and M.A. Coimbra. 2001. Chemical characterization of the high molecular weight material extracted with hot water from green and roasted Arabica coffee. J. Agric. Food Chem. 49: 1773-1782.   DOI
6 Perrone, D., A. Farah and C.M. Donangelo. 2012a. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agric. Food Chem. 60:4265-4275.   DOI
7 Perrone, D., A. Farah and C.M. Donangelo. 2012b. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agric. Food Chem. 60:4265-4275.   DOI
8 Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C.R. Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237.   DOI
9 Leloup, V., A. Louvrier and R. Liardon. 1995. Degradation mechanisms of chlorogenic acids during roasting. ASIC, Paris, France. pp. 192-198.
10 Robinson, W. E., M. Cordeiro, S. Abdel-Malek, Q. Jia, S.A. Chow, M.G. Reinecke and W.M. Mitchell. 1996. Dicaffeoylquinic acid inhibitors of human immunodeficiency virus integrase: inhibition of the core catalytic domain. Mol. Pharmacol. 50:846-855.
11 Saeed, N., M.R. Khan and M. Shabbir. 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilisleptophylla L. BMC Complement Altern. Med. 12:221. doi: 10.1186/1472-6882-12-221.   DOI
12 Singleton, V.L., R. Orthofer and R.M. Lamuncia-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol. 299:152-178.
13 Schuster, R. 1988. Determination of amino-acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid-chromatography. J. Chromatogr. 431: 271-284.   DOI
14 Shen, Q., B. Zhang, R. Xu, Y. Wang, X. Ding and P. Li. 2010. Antioxidant activity in vitro of selenium-contained protein from the se-enriched bifidobacterium animalis 01. Anaerobe. 16:380-386.   DOI
15 Shimoda, H., E. Seki and M. Aitani. 2006. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern. Med. 6:9. doi: 10.1186/1472- 6882-6-9.   DOI
16 Somporn, C., A. Kamtuo and P. Theerakulpisut. 2011. Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor). Int. J. Food Sci. Tech. 46:2287-2296.   DOI
17 Stalmach, A., W. Mullen, C. Nagai and A. Crozier. 2006. On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed, paper-filtered coffee. Braz. J. Plant Physiol. 18:253-262.   DOI
18 Trute, A., J. Gross, E. Mutschler and A. Nahrstedt. 1997. In vitro antispasmodic compounds of the dry extract obtained from Hedera helix. Planta. Med. 63:125-129.   DOI
19 Trugo, L.C. and R. Macrae. 1984. A study of the effect of roasting on the chlorogenic acid composition of coffee using HPLC. Food Chemistry 15:219-227.   DOI
20 Trugo, L.C. and R. Macrae. 1984. Chlorogenic acid composition of instant coffees. Analyst 109:263-266.   DOI
21 Wei, F. and M. Tanokura. 2015. Chemical changes in the components of coffee beans during roasting. Academic Press. London, UK. pp. 83-91.
22 Zanoelo, E.F. and C. Beninca. 2009. Chemical kinetics of 5-o-caffeoylquinic acid in superheated steam: effect of isomerization on mate (Ilex paraguariensis) manufacturing. J. Agric. Food Chem. 57:11564-11569.   DOI
23 Bicho, N.C., A.E. Leitao, J.C. Ramalho and F.C. Lidon. 2012. Use of colour parameters for roasted coffee assessment. Cienc. Tecnol. Aliment., Campinas. 32:436-442.   DOI
24 Almeida, A.A., A. Farah, D.A. Silva, E.A. Nunan and M.B. Gloria. 2006. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agric. Food Chem. 54:8738-8743.   DOI
25 Bekedam, E.K., M.J. Loots, H.A. Schols, M.A.J.S.V. Boekel and G. Smit. 2008. Roasting effects on formation mechanisms of coffee brew melanoidins. J. Agric. Food Chem. 56:7138-7145.   DOI
26 Belay, A., K. Ture, M. Redi and A. Asfaw. 2008. Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chemistry 108:310-315.   DOI
27 Chu, Q., M. Lin, X. Yu and J. Ye. 2007. Study on extraction efficiency of natural antioxidant in coffee by capillary electrophoresis with amperometric detection. Eur. Food Res. Technol. 226:1373-1378.
28 Clifford, M.N. 1979. Chlorogenic acids- Their complex nature and routine determination in coffee beans. Food Chemistry 4:63-71.   DOI
29 Dawidowicz, A.L. and R. Typek. 2010. Thermal stability of 5-o-caffeoylquinic acid in aqueous solutions at different heating conditions. J. Agric. Food Chem. 58:12578-12584.   DOI
30 Coelho, C., M. Ribeiro, A.C. Cruz, M.R. Domingues, M.A. Coimbra, M. Bunzel and F.M. Nunes. 2014. Nunes. Nature of phenolic compounds in coffee melanoidins. J. Agric. Food Chem. 62:7843-7853.   DOI
31 Farah, A., T. Paulis, L.C. Trugo and P.R. Martin. 2005b. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. 53:1505-1513.   DOI
32 Dawidowicz, A.L. and R. Typek. 2011. The influence of pH on the thermal stability of 5-o-caffeoylquinic acids in aqueous solutions. Eur. Food Res. Technol. 233:223-232.   DOI
33 Farah, A. and C.M. Donangelo. 2006. Phenolic compounds in coffee. Braz. J. Plant Physiol. 18: 23-36.   DOI
34 Farah, A., T. Paulis, L.C. Trugo and P.R. Martin. 2005a. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. 53:1505-1513.   DOI
35 Farah, A., T. Paulis, L.C. Trugo and P.R. Martin. 2005c. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. 53:1505-1513.   DOI
36 Farah, A., T. Paulis, L.C. Trugo and P.R. Martin. 2005d. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. 53:1505-1513.   DOI
37 Franca, A.S., J.C.F. Mendonca and S.D. Oliveira. 2005. Composition of green and roasted coffees of different cup qualities. LWT. 38:709-715.   DOI
38 Illy, A. and R. Viani. 1995. Espresso coffee: the chemistry of quality. Academic Press, London, UK. pp. 179-209.
39 Hecimovic, I., A. Belscak-Cvitanovic, D. Horzic and D. Komes. 2011. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry 129:991-1000.   DOI
40 [ICO]-International Coffee Organization. 2016. Trade Statistics Table. Available at: http://www.ico.org/monthly_coffee_trade_stats.asp (Accessed: November 30, 2016).
41 Jayanthi, P. and P. Lalitha. 2011. Reducing power of the solvent extracts of Eichhorniacrassipes (Mart.) Solms. Int J Pharm Pharm Sci. 3:126-128.