Browse > Article
http://dx.doi.org/10.7732/kjpr.2018.31.5.453

Analysis of Sugars Content by Genotypes in 82 Radish (Raphanus sativus L.)  

Seo, Mi-Suk (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Chung, Joon-Hui (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Park, Beom-Suk (Hongik Bio Corporation)
Kim, Jung Sun (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Korean Journal of Plant Resources / v.31, no.5, 2018 , pp. 453-465 More about this Journal
Abstract
Radish (Raphanus sativus L.) is a species of the Brassicaceae family and an important root vegetable crop, produced worldwide. A total of 82 radish accessions with various morphological and physiological characteristics analyzed for total sugars content. These accessions includes five subspecies and classified as wild, wild-relative, traditional and improved cultivar. The four sugars, glucose, fructose, sucrose and maltose, showed various contents in 82 accessions. Total sugar content ranged from 5.64 to 46.68 mg/g and showed average 25.33 mg/g. Total sugar content was not statistically significant among the five subspecies, but individual sugar ratio varied. The wild, wild-relatives and traditional cultivars were not significantly among average total sugars content compared with improved cultivars. On the other hand, the wild and traditional cultivars were showed high ratio of individual sugars. These results could be valuable information for the development of new radish cultivars and regulation of sugars biosynthesis in radish.
Keywords
Accessions; Raphanus sativus; Subspecies; Sugars content; Sugar ratio;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kwak, J.Y., S.H. Kim, K.H. Seong, M.J. Yoo, K.B. Park, Y.P. Lim and J.T. Park. 2017. Relationship between major components and physicochemical properties of radish (Raphanus sativus L.) combinations for developing new cultivars targeting Chinese market. Korean J Horti Sci Technol. 10:577-587.
2 Lee, W.Y., W.S. Cha, S.L. Oh, Y.J. Cho, H.Y. Lee, B.S. Lee, J.S. Park and J.H. Park. 2006. Quality characteristics of dried radish (Raphanus sativus L.) by drying methods. Korean J. Food Preserv. 13:37-42.
3 Lu, Y. and T.D. Sharkey. 2006. The importance of maltose in transitory starch breakdown. Plant Cell Environ. 29:353-366.   DOI
4 Mahawanich, T. and Schmidt S.J. 2004. Molecular mobility and the perceived sweetness of sucrose, fructose, and glucose solutions. Food Chemistry 84:169-179.   DOI
5 Moghe, G.D., D.E. Hufnagel, H. Tang, Y. Xiao, I. Dworkin, C.D. Town, J.K. Conner and S.H. Shiu. 2014. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish (Raphanus raphanistrum) and three other Brassicaceae species. The Plant Cell 26:1925-1937.   DOI
6 Mitsui, Y., M. Shimomura, K. Komatsu, N. Namiki, M. Shibata-Hatta, M. Imai, Y. Katayose, Y. Mukai, H. Kanamori and K. Kurita. 2015. The radish genome and comprehensive gene expression profile of tuberous root formation and development. Scientific Reports 5:10835.   DOI
7 Mun, J.H., H. Chung, W.H. Chung, M.J. Oh, Y.M. Jeong, N.S. Kim, B.O. Ahn, B.S. Park, S.Y. Park, K.B. Lim, Y.J. Hwang and H.J. Yu. 2015. Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theor Appl Genet. 128:259-272.   DOI
8 Murtaza, I., G.M. Beigh, T.A. Shah, A. Hussain, A.A. Khan and C. Kaur. 2005. Antioxidant activity and total phenolic content of kale genotypes grown in Kashmir vally. J. Plant Biochem Biot. 14:215-217.   DOI
9 Seo, M.S., M. Jin, S.H. Sohn and J.S. Kim. 2017. Expression profiles of BrMYB transcription factors related to glucosinolate biosynthesis and stress response in eight subspecies of Brassica rapa. FEBS Open Bio 7:1646-1659.   DOI
10 Pilon-Smits, E.A.H., M.J.M. Ebskamp, M.J. Paul, M.J.W. Jeuken, P.J. Weisbeek and S.C.M. Smeekens. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107:125-130.   DOI
11 Xiaohui, Z., Y. Zen, M. Shiyong, Q. Yang, Y. Xinhua, C. Xiaohua, C. Feng, W. Zhangyan, S. Yuyan and J. Yi. 2015. A de novo genome of a Chinese radish cultivar. Horti Plant J. 1:155-164.
12 Yi, G., S. Lim, W.B. Chae, J.E. Park, H.R. Park, E.J. Lee and J.H. Huh. 2016. Root glucosinolate profiles for screening of radish (Raphanus sativus L.) genetic resources. J Agric Food Chem. 13(64):61-70.
13 Zamora, M.C., F.M. Buratti and M.E. Otero-Losada. 1998. Temporal study of sucrose and fructose relative sweetness. J Sensory Studies 13:213-228.   DOI
14 Glendinning, J.I., L. Breinager, E. Kyrillou, K. Lacuna, R. Rocha and A. Sclafani. 2010. Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol Behav. 101:331-343.   DOI
15 Dobrenel, T., C. Marchive, M. Azzopardi, G. Clement, M. Moreau, R. Sormani, C. Robaglia and C. Meyer. 2013. Sugar metabolism and the plant target of rapamycin kinase: a sweet operator. Frontiers in Plant Sci. 4:93.
16 Ellstrand, N. and D. Marshall. 1985. The impact of domestication on distribution of allozyme variation within and among cultivars of radish, Raphanus sativus L. Theor Appl Genet. 69:393-398.   DOI
17 Giusti, M.M., L.E. Rodriguez-saona, J.R. Baggett, G.L. Reed, R.W. Durst and R.E. Wrolstad. 1998. Anthocyanin pigment composition of red radish cultivars as potential food colorants. J Food Sci. 63:219-224.
18 Hara, M., K. Oki, K. Hoshino and T. Kuboi. 2003. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus L.) hypocotyl. Plant Sci. 164:259-265.   DOI
19 Hara, M., D. Torazawa, T. Asai and I. Takahashi. 2011. Variations in the soluble sugar and organic acid contents in radish (Raphanus sativus L.) cultivars. Food Sci Technol. 46:2387-2392.
20 Hashida, T., R. Nakatsuji, H. Budahn, O. Schrader, H. Peterka, T. Fujimura, N. Kubo and M. Hirai. 2013. Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits. Breeding Sci. 63:218-226.   DOI
21 Kim, N.S., Y.M. Jeong, S.M. Jeong, G.B. Kim, S.H. Baek, Y.E. Kwon, A. Cho, S.B. Choi, J.W. Kim, W.J. Lim, K.H. Kim, W. Park, J. Kim, J.H. Kim, B. Yim, Y.J. Lee, B.M. Chun, Y.P. Lee, B.S. Park, H.J. Yu and J.H. Mun. 2016. Identification of candidate domestication regions in the radish genome based on high-depth resequencing analysis of 17 genotypes. Theor Appl Genet. 129:1797-1814.   DOI
22 Irwin, R.E. and S.Y. Strauss. 2005 Flower color microevolution in wild radish: evolutionary response to pollinator-mediated selection. Am Nat. 165:225-237.
23 Jeong, Y.M., N. Kim, B.O. Ahn, M. Oh, W.H. Chung, H. Chung, S. Jeong, K.B. Lim, Y.J. Hwang and G.B. Kim. 2016. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. Theor Appl Genet. 129:1357-1372.   DOI
24 Kim, B.M., K.M. Lee and I.C. Jung. 2017. Changes in anthocyanin content of aronia (Aronia melancocarpa) by processing conditions. Korean J. Plant Res. 30:152-159.   DOI
25 Kitashiba, H., F. Li, H. Hirakawa, T. Kawanabe, Z. Zou, Y. Hasegawa, K. Tonosaki, S. Shirasawa, A. Fukushima and S. Yokoi. 2014. Draft sequences of the radish (Raphanus sativus L.) genome. DNA Research 21:481-490.   DOI
26 Ko, H.C., J.S. Sung, O.S. Hur, H.J. Baek, Y.A. Jeon, B.P. Luitel, K.Y. Ryu, J.B. Kim and J.H. Rhee. 2017. Comparison of glucosinolate contents in leaves and roots of radish (Raphanus spp.). Korean J. Plant Res. 30:579-589.
27 Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol. 7:235-246.   DOI
28 Koster, K.L. and A.C. Leopold. 1988. Sugars and desiccation tolerance in seeds. Plant Physiol. 96:302-304.